(完整word)数列知识点总结及题型归纳,推荐文档 下载本文

内容发布更新时间 : 2025/1/11 16:49:05星期一 下面是文章的全部内容请认真阅读。

让学习成为一种习惯!

数列

一、数列的概念

(1)数列定义:按一定次序排列的一列数叫做数列;

数列中的每个数都叫这个数列的项。记作an,在数列第一个位置的项叫第1项(或首项),在第二个位

置的叫第2项,……,序号为n 的项叫第n项(也叫通项)记作an; 数列的一般形式:a1,a2,a3,……,an,……,简记作 ?an?。

例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9;

(2)2010年各省参加高考的考生人数。

(2)通项公式的定义:如果数列{an}的第n项与n之间的关系可以用一个公式表示,那么这个公式就

叫这个数列的通项公式。

例如:①:1 ,2 ,3 ,4, 5 ,…

②:1,,,,…

数列①的通项公式是an= n(n?7,n?N?), 数列②的通项公式是an= 说明:

①?an?表示数列,an表示数列中的第n项,an= f?n?表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,an= (?1)=?n111123451(n?N?)。 n??1,n?2k?1(k?Z);

??1,n?2k ③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,……

(3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9

上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。从函数观点看,数列

实质上是定义域为正整数集N?(或它的有限子集)的函数f(n)当自变量n从1开始依次取值时对应的一系列函数值f(1),f(2),f(3),……,f(n),…….通常用an来代替f?n?,其图象是一群孤立点。

例:画出数列an?2n?1的图像.

(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。

例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,…

(n?1)?S1(5)数列{an}的前n项和Sn与通项an的关系:an??

S?S(n≥2)n?1?n2例:已知数列{an}的前n项和sn?2n?3,求数列{an}的通项公式

1

让学习成为一种习惯!

练习:

1.根据数列前4项,写出它的通项公式:

(1)1,3,5,7……;

22?132?142?152?1(2),,,;

23451111(3)?,,?,。

1*22*33*44*5(4)9,99,999,9999…

(5)7,77,777,7777,…

(6)8, 88, 888, 8888…

n2?n?1(n?N?) 2.数列?an?中,已知an?3(1)写出a1,,a2,a3,an?1,an2; (2)792是否是数列中的项?若是,是第几项? 3 3.(2003京春理14,文15)在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表.观察表中数据的特点,用适当的数填入表中空白(_____)内。

4、由前几项猜想通项:

根据下面的图形及相应的点数,在空格及括号中分别填上适当的图形和数,写出点数的通项公式. (1)

(4)

(7)

( )

( )

5.观察下列各图,并阅读下面的文字,像这样,10条直线相交,交点的个数最多是( ),其通项公式为 .

A.40个 B.45个 C.50个 D.55个

2条直线相交,最多有1 个交点

3条直线相交,最多有3个交点

2

4条直线相交,最多有6个交点

让学习成为一种习惯!

二、等差数列

题型一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示。用递推公式表示为an?an?1?d(n?2)或an?1?an?d(n?1)。

例:等差数列an?2n?1,an?an?1? 题型二、等差数列的通项公式:an?a1?(n?1)d;

说明:等差数列(通常可称为AP数列)的单调性:d?0为递增数列,d?0为常数列,d?0 为递减数列。

,则a12等于( ) 例:1.已知等差数列?an?中,a7?a9?16,a4?1A.15 B.30 C.31 D.64

2.{an}是首项a1?1,公差d?3的等差数列,如果an?2005,则序号n等于 (A)667 (B)668 (C)669 (D)670

3.等差数列an?2n?1,bn??2n?1,则an为 bn为 (填“递增数列”或“递减数列”)

题型三、等差中项的概念:

定义:如果a,A,b成等差数列,那么A叫做a与b的等差中项。其中A? a,A,b成等差数列?A?a?b 2a?b 即:2an?1?an?an?2 (2an?an?m?an?m) 2a1a2a3?80,例:1.(06全国I)设?an?是公差为正数的等差数列,若a1?a2?a3?15,则a11?a12?a13? ( )

A.120 B.105 C.90 D.75

2.设数列{an}是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A.1 B.2 C.4 D.8

题型四、等差数列的性质:

(1)在等差数列?an?中,从第2项起,每一项是它相邻二项的等差中项; (2)在等差数列?an?中,相隔等距离的项组成的数列是等差数列; (3)在等差数列?an?中,对任意m,n?N?,an?am?(n?m)d,d?an?am(m?n);

n?m(4)在等差数列?an?中,若m,n,p,q?N?且m?n?p?q,则am?an?ap?aq; 题型五、等差数列的前n和的求和公式:Sn?2(Sn?An?Bnn(a1?an)n(n?1)1d(a1?)n。?na1?d?n2?2222(A,B为常数)??an?是等差数列 )

递推公式:Sn?

(a1?an)n(am?an?(m?1))n? 22 例:1.如果等差数列?an?中,a3?a4?a5?12,那么a1?a2?...?a7? (A)14 (B)21 (C)28 (D)35

3

让学习成为一种习惯!

2.(2009湖南卷文)设Sn是等差数列?an?的前n项和,已知a2?3,a6?11,则S7等于( ) A.13 B.35 C.49 D. 63

3.(2009全国卷Ⅰ理) 设等差数列?an?的前n项和为Sn,若S9?72,则a2?a4?a9= 4.(2010重庆文)(2)在等差数列?an?中,a1?a9?10,则a5的值为( )

(A)5 (B)6 (C)8 (D)10

5.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )

A.13项 B.12项 C.11项 D.10项 6.已知等差数列?an?的前n项和为Sn,若S12?21,则a2?a5?a8?a11? 7.(2009全国卷Ⅱ理)设等差数列?an?的前n项和为Sn,若a5?5a3则8.(98全国)已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=100. (Ⅰ)求数列{bn}的通项bn;

9.已知?an?数列是等差数列,a10?10,其前10项的和S10?70,则其公差d等于( )

S9? S5A.?23112B.? C. D.

33310.(2009陕西卷文)设等差数列

?an?的前n项和为sn,若a6?s3?12,则an?

Sn}n11.(00全国)设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn为数列{的前n项和,求Tn。

12.等差数列?an?的前n项和记为Sn,已知a10?30,a20?50 ①求通项an;②若Sn=242,求n

13.在等差数列{an}中,(1)已知S8?48,S12?168,求a1和d;(2)已知a6?10,S5?5,求a8和S8;(3)已知a3?a15?40,求S17

4

让学习成为一种习惯!

题型六.对于一个等差数列:

S奇a(1)若项数为偶数,设共有2n项,则①S偶?S奇?nd; ② ?n;

S偶an?1Sn(2)若项数为奇数,设共有2n?1项,则①S奇?S偶?an?a中;②奇?。

S偶n?1

题型七.对与一个等差数列,Sn,S2n?Sn,S3n?S2n仍成等差数列。

例:1.等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为( )

A.130 B.170 C.210 D.260

2.一个等差数列前n项的和为48,前2n项的和为60,则前3n项的和为 。

3.已知等差数列?an?的前10项和为100,前100项和为10,则前110项和为 4.设Sn为等差数列?an?的前n项和,S4?14,S10?S7?30,则S9= 5.(06全国II)设Sn是等差数列{an}的前n项和,若

S31S=,则6= S63S12D.

A.

113 B. C.

38101 9题型八.判断或证明一个数列是等差数列的方法: ①定义法:

an?1?an?d(常数)(n?N?)??an?是等差数列

②中项法:

2an?1?an?an?2③通项公式法:

(n?N?)??an?是等差数列

an?kn?b(k,b为常数)??an?是等差数列

(A,B为常数)??an?是等差数列

④前n项和公式法:

Sn?An2?Bn

例:1.已知数列{an}满足an?an?1?2,则数列{an}为 ( )

A.等差数列 B.等比数列 C.既不是等差数列也不是等比数列 D.无法判断

2.已知数列{an}的通项为an?2n?5,则数列{an}为 ( )

A.等差数列 B.等比数列 C.既不是等差数列也不是等比数列 D.无法判断

5