内容发布更新时间 : 2025/1/27 7:32:21星期一 下面是文章的全部内容请认真阅读。
第二十一章 一元二次方程 21.1 一元二次方程
1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题.
2.掌握一元二次方程的一般形式ax2+bx+c=0(a≠0)及有关概念.
3.会进行简单的一元二次方程的试解;理解方程解的概念.
重点:一元二次方程的概念及其一般形式;一元二次方程解的探索.
难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.
一、自学指导.(10分钟) 问题1:
如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?
分析:设切去的正方形的边长为x cm,则盒底的长为__(100
-2x)cm__,宽为__(50-2x)cm__.列方程__(100-2x)·(50-2x)=3600__,化简整理,得__x2-75x+350=0__.①
问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?
分析:全部比赛的场数为__4〓7=28__.
设应邀请x个队参赛,每个队要与其他__(x-1)__个队各赛x(x-1)x(x-1)1场,所以全部比赛共__场.列方程__=2228__,化简整理,得__x2-x-56=0__.②
探究:
(1)方程①②中未知数的个数各是多少?__1个__. (2)它们最高次数分别是几次?__2次__.
归纳:方程①②的共同特点是:这些方程的两边都是__整式__,只含有__一个__未知数(一元),并且未知数的最高次数是__2__的方程.
1.一元二次方程的定义
等号两边都是__整式__ ,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.
2.一元二次方程的一般形式
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:
ax2+bx+c=0(a≠0).
这种形式叫做一元二次方程的一般形式.其中__ax2__是二次项,__a__是二次项系数,__bx__是一次项,__b__是一次项系数,__c__是常数项.
点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a≠0是一个重要条件,不能漏掉.
二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)
1.判断下列方程,哪些是一元二次方程? (1)x3-2x2+5=0; (2)x2=1; 123(3)5x-2x-=x-2x+;
45
2
(4)2(x+1)2=3(x+1);
(5)x2-2x=x2+1; (6)ax2+bx+c=0. 解:(2)(3)(4).
点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程.
2.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
解:去括号,得3x2-3x=5x+10.移项,合并同类项,得3x2
-8x-10=0.其中二次项系数是3,一次项系数是-8,常数项是-10.
点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.