Àî·²³¤°æ-×éºÏÊýѧ¿ÎºóϰÌâ´ð°¸-ϰÌâ3 ÏÂÔØ±¾ÎÄ

ÄÚÈÝ·¢²¼¸üÐÂʱ¼ä : 2025/4/18 23:17:34ÐÇÆÚÒ» ÏÂÃæÊÇÎÄÕµÄÈ«²¿ÄÚÈÝÇëÈÏÕæÔĶÁ¡£

Àî·²³¤°æ-×éºÏÊýѧ¿ÎºóϰÌâ´ð°¸-ϰÌâ3

µÚÈýÕ µÝÍÆ¹ØÏµ

1. ÔÚÆ½ÃæÉÏ»­nÌõÎÞÏÞÖ±Ïß,ÿ¶ÔÖ±Ïß¶¼ÔÚ²»Í¬µÄµãÏཻ,ËüÃǹ¹³ÉµÄÎÞÏÞ

ÇøÓòÊý¼ÇΪf(n),Çóf(n)Âú×ãµÄµÝÍÆ¹ØÏµ.

½â£º f(n)=f(n-1)+2 f(1)=2,f(2)=4

½âµÃf(n)=2n.

2. nλÈý½øÖÆÊýÖÐ,ûÓÐ1³öÏÖÔÚÈκÎ2µÄÓұߵÄÐòÁеÄÊýÄ¿¼ÇΪf(n),Çó

f(n)Âú×ãµÄµÝÍÆ¹ØÏµ.

½â£ºÉèan-1an-2¡­a1ÊÇÂú×ãÌõ¼þµÄn-1λÈý½øÖÆÊýÐòÁУ¬ÔòËüµÄ¸öÊý¿ÉÒÔÓÃf(n-1)

±íʾ¡£

an¿ÉÒÔÓÐÁ½ÖÖÇé¿ö£º

1£© ²»¹ÜÉÏÊöÐòÁÐÖÐÊÇ·ñÓÐ2£¬ÒòΪanµÄλÖÃÔÚ×î×ó±ß£¬Òò´Ë0

ºÍ1¾ù¿ÉÑ¡£»

2£© µ±ÉÏÊöÐòÁÐÖÐûÓÐ1ʱ£¬2¿ÉÑ¡£» ¹ÊÂú×ãÌõ¼þµÄÐòÁÐÊýΪ

f(n)=2f(n-1)+2n-1 n?1, f(1)=3 ½âµÃf(n)=2n-1(2+n).

3. nλËĽøÖÆÊýÖÐ,2ºÍ3³öÏÖżÊý´ÎµÄÐòÁеÄÊýÄ¿¼ÇΪf(n),Çóf(n)Âú×ã

µÄµÝÍÆ¹ØÏµ.

½â£ºÉèh(n)±íʾ2³öÏÖżÊý´ÎµÄÐòÁеÄÊýÄ¿£¬g(n)±íʾÓÐżÊý¸ö2ÆæÊý¸ö3µÄ

ÐòÁеÄÊýÄ¿£¬ÓɶԳÆÐÔËüͬʱ»¹¿ÉÒÔ±íÊ¾ÆæÊý¸ö2żÊý¸ö3µÄÐòÁеÄÊýÄ¿¡£ÔòÓÐ

h(n)=3h(n-1)+4n-1-h(n-1),h(1)=3 £¨1£© f(n)=h(n)-g(n),f(n)=2f(n-1)+2g(n-1) £¨2£© ½«£¨1£©µÃµ½µÄh(n)=(2n+4n)/2´úÈ루2£©£¬¿ÉµÃ f(n+1)= (2n+4n)/2-2f(n), f(1)=2. 4. ÇóÂú×ãÏàÁÚλ²»Í¬Îª0µÄnλ¶þ½øÖÆÐòÁÐÖÐ0µÄ¸öÊýf(n). ½â£ºÕâÖÖÐòÁÐÓÐÁ½ÖÖÇé¿ö£º

1)×îºóһλΪ0£¬ÕâÖÖÇé¿öÓÐf(n-3)¸ö£»

2)×îºóһλΪ1£¬ÕâÖÖÇé¿öÓÐ2f(n-2)¸ö£» ËùÒÔ

f(n)=f(n-3)+2f(n-2) f(1)=2,f(2)=3,f(3)=5. 5. Çónλ0,1ÐòÁÐÖС°00¡±Ö»ÔÚ×îºóÁ½Î»²Å³öÏÖµÄÐòÁÐÊýf(n). ½â£º×îºóÁ½Î»ÊÇ¡°00¡±µÄÐòÁй²ÓÐ2n-2¸ö¡£

f(n)°üº¬ÁËÔÚ×îºóÁ½Î»µÚÒ»´Î³öÏÖ¡°00¡±µÄÐòÁÐÊý£¬Í¬Ê±ÅųýÁËÔÚn-1λµÚÒ»´Î³öÏÖ¡°00¡±µÄ¿ÉÄÜ£»

f(n-1)±íʾÔÚµÚn-1λµÚÒ»´Î³öÏÖ¡°00¡±µÄÐòÁÐÊý£¬Í¬Ê±Í¬Ê±ÅųýÁËÔÚn-2λµÚÒ»´Î³öÏÖ¡°00¡±µÄ¿ÉÄÜ£»

ÒÀ´ËÀàÍÆ£¬ÓÐ

17

f(n)+f(n-1)+f(n-2)+¡­+f(2)=2n-2

f(2)=1,f(3)=1,f(4)=2. 6. Çónλ0,1ÐòÁÐÖС°010¡±Ö»³öÏÖÒ»´ÎÇÒÔÚµÚnλ³öÏÖµÄÐòÁÐÊýf(n). ½â£º×îºóÈýλÊÇ¡°010¡±µÄÐòÁй²ÓÐ2n-3¸ö¡£°üÀ¨ÒÔÏÂÇé¿ö£º

f(n)°üº¬ÁËÔÚ×îºóÈýλµÚÒ»´Î³öÏÖ010µÄ¸öÊý£¬Í¬Ê±ÅųýÁË´Ó

n-4µ½n-2λµÚÒ»´Î³öÏÖ010µÄ¿ÉÄÜ£»

f(n-2)°üº¬ÁË´Ón-4µ½n-2λµÚÒ»´Î³öÏÖ010µÄ¸öÊý£» f(n-3)°üº¬ÁË´Ón-5µ½n-3λµÚÒ»´Î³öÏÖ010µÄ¸öÊý£»

2f(n-4)°üº¬ÁË´Ón-6µ½n-4λµÚÒ»´Î³öÏÖ010µÄ¸öÊý£¨ÒòΪ

ÔÚµÚn-3λ¿ÉÒÔÈ¡0»ò1£©£»

ͬÀí£¬k?3ʱ£¬µÚn-k-2µ½n-kλµÚÒ»´Î³öÏÖ010µÄ¸öÊýΪ k-3

2f(n-k)(ÒòΪµÚn-kλ¡«n-3λÖмäµÄk-3λ¿ÉÒÔÈ¡0¡¢1£¬ËùÒÔÓÐ2k-3ÖÖ״̬)¡£

ËùÒÔÂú×ãÌõ¼þµÄµÝÍÆ¹ØÏµÎª

f(n)+f(n-2)+f(n-3)+¡­+2n-6f(3)=2n-3 n?6 f(3)=1,f(4)=2,f(5)=3.

7. ÓжàÉÙ¸ö³¤¶ÈΪnµÄ0,1ÐòÁÐ,ÔÚÕâЩÐòÁÐÖÐ,¼È²»°üº¬¡°010¡±,Ò²²»°ü

º¬¡°101¡±£¿

½â£ºÉèÂú×ãÌõ¼þµÄÐòÁÐÊýΪf(n)

¿¼ÂÇn-1λʱ×î×ó±ßµÄÇé¿ö£º

1) ×î×ó±ßΪ1£¬Ôò×ó±ß¿ÉÑ¡0»ò1Éú³ÉÂú×ãÒªÇóµÄÐòÁУ¬ÕâÖÖÇé¿öÓÐ2f(n-2)¸ö£»

2) ×î×ó±ßΪ01£¬Ôò×ó±ßÖ»ÄÜÑ¡1²ÅÄÜÂú×ãÒªÇó£¬ÕâÖÖÇé¿öÓÐ

f(n-3)¸ö£»

f(n)=2f(n-2)+f(n-3) f(2)=1,f(3)=1,f(4)=2. 8. ÔÚÐŵÀÉÏ´«Êäa,b,cÈý¸ö×Öĸ×é³ÉµÄ³¤ÎªnµÄ×Ö·û´®,Èô×Ö·û´®ÖÐÓÐÁ½

¸öaÁ¬Ðø³öÏÖ,ÔòÐŵÀ¾Í²»ÄÜ´«Êä.Áîf(n)±íʾÐŵÀ¿ÉÒÔ´«ÊäµÄ³¤ÎªnµÄ×Ö·û´®µÄ¸öÊý,Çóf(n)Âú×ãµÄµÝÍÆ¹ØÏµ.

½â£ºÐŵÀÉÏÄܹ»´«ÊäµÄ³¤¶ÈΪn£¨n?2£©µÄ×Ö·û´®¿É·Ö³ÉÈçÏÂËÄÀࣺ

1) ×î×ó×Ö·ûΪb£» 2) ×î×ó×Ö·ûΪc£»

3) ×î×óÁ½¸ö×Ö·ûΪab£» 4) ×î×óÁ½¸ö×Ö·ûΪac£»

ǰÁ½Àà×Ö·û´®·Ö±ðÓÐf(n-1)¸ö£¬ºóÁ½Àà×Ö·û´®·Ö±ðÓÐf(n-2)¸ö¡£ÈÝÒ×Çó³ö

f(1)=3,f(2)=8¡£´Ó¶øµÃµ½ f(n)=2f(n-1)+2f(n-2) (n?3) f(1)=3,f(2)=8. 9. Çó½âÏÂÁеÝÍÆ¹ØÏµ£º

?f(n)?2f(n?1)?2f(n?2)£¨1£©?£»

?f(1)?3,f(2)?8½â£ºÏÈÇóÕâ¸öµÝÍÆ¹ØÏµµÄͨ½â£¬ËüµÄÌØÕ÷·½³ÌΪx2-2x£­2=0

½âÕâ¸ö·½³Ì£¬µÃx1?1?3,x2?1?3. 18