¹ã¶«Ê¡ÖÐɽÊÐÆÕͨ¸ßÖÐ2017-2018ѧÄê¸ßÒ»Êýѧ11ÔÂÔ¿¼ÊÔÌâ06 ÏÂÔØ±¾ÎÄ

ÄÚÈÝ·¢²¼¸üÐÂʱ¼ä : 2025/12/19 9:16:03ÐÇÆÚÒ» ÏÂÃæÊÇÎÄÕµÄÈ«²¿ÄÚÈÝÇëÈÏÕæÔĶÁ¡£

ÉÏѧÆÚ¸ßÒ»Êýѧ11ÔÂÔ¿¼ÊÔÌâ06

Ò»¡¢Ñ¡ÔñÌ⣨±¾Ìâ10СÌ⣬ÿСÌâ3·Ö£¬¹²30·Ö£¬Ã¿Ð¡Ìâ¸ø³öµÄËĸöÑ¡ÏîÖУ¬Ö»ÓÐÒ»ÏîÊÇ·ûºÏÌâĿҪÇóµÄ£©

1.É輯ºÏA={x|1?x?4},£¬¼¯ºÏB ={x|x?2x?3?0}, ÔòA¡É£¨?RB£©=£¨ £©

A .(1,4) B .(3,4) C.(1,3) D .(1,2)¡È£¨3,4£©. 2.ÏÂÁÐËÄ×麯ÊýÖУ¬±íʾÏàͬº¯ÊýµÄÒ»×éÊÇ £¨ £© A.f(x)?lgx,g(x)?2lgx B.f(x)?22x?1?x?1,g(x)?x2?1 xx2?1?1?,g(x)?x?1 D.f(x)?2?x,g(x)??? C.f(x)?x?1?2?3.ÒÑÖªf(x)?ax7?bx5?cx3?2£¬ÇÒf(?5)?m£¬ Ôòf(5)?f(?5)µÄֵΪ £¨ £©. A. 4 B. 0 C. 2m D. ?m?4

x4.Èôº¯Êýf(x)¡¢g(x)·Ö±ðÊÇRÉÏµÄÆæº¯Êý¡¢Å¼º¯Êý£¬ÇÒÂú×ãf£¬ÔòÓÐ (x)?g(x)?e£¨ £©

A.f (2)?f(3)?g(0)(0)?f(3)?f(2) B. gC.f (2)?g(0)?f(3)

D. g(0)?f(2)?f(3)

ex?e?x5£®º¯Êýy?xµÄͼÏñ´óÖÂΪ £¨ £©

e?e?x

y 1O 1 x 1O1xyyy 1 O 1 x D A B C 1 O1 x6£®ÒÑÖªº¯Êýy=1?x?A£®

x?3µÄ×î´óֵΪM,×îСֵΪm,Ôò

C.

mµÄֵΪ ( ) M11 B. 42x2 2 D.

3 27.ÒÑÖªº¯Êýf(x)?a(a?0ÇÒa?1)ÔÚÇø¼ä[£­2£¬2]ÉϵÄÖµ²»´óÓÚ2£¬Ôòº¯Êýg(a)?log2aµÄÖµÓòÊÇ £¨ £©

A£®[?,0)?(0,] B£®(??,?)?(0,] C£®[?,] D£®[?,0)?[,??) 8£®ÔÚRÉ϶¨ÒåÔËËã?:x?y?x(1?y)£¬Èô²»µÈʽ(x?a)?(x?a)?1¶ÔÈÎÒâʵÊýx³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ £¨ £© A£®?1?a?1 B£®0?a?2 C£®?12121212112212121331?a? D£®??a? 222229£®º¯Êýf(x)?loga(ax?x)ÔÚÇø¼ä[2£¬4]ÉÏÊÇÔöº¯Êý£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨ £©

A£®

11?a?»òa?1 84 C.

11C£®0?a?»òa?1 D£®a?1 ?a?1»òa?1

8810£®É躯Êýf(x)??x(x?R),Çø¼äM£½[a,b](a?b), ¼¯ºÏN£½{y y?f(x),x?M}ʹM

1? x £½N³ÉÁ¢µÄʵÊý¶Ô(a,b)ÓÐ £¨ £©

A£®0¸ö B. 1¸ö C. 2¸ö D. ÎÞÊý¶à¸ö

¶þ.Ìî¿ÕÌ⣨±¾´óÌâ¹²5СÌ⣬ÿСÌâ4·Ö£¬¹²20·Ö£© 11£®º¯Êýf(x)?12.°Ñº¯Êýy?21?x3x21?x?lg(3x?1)µÄ¶¨ÒåÓòÊÇ________

?3µÄͼÏóÏò×óÒÆ1¸öµ¥Î»£¬ÏòÏÂÒÆ4¸öµ¥Î»ºó£¬ÔÙ¹ØÓÚxÖá¶Ô³Æ£¬ËùµÃ

º¯ÊýµÄ½âÎöʽΪ

?|lgx|,0?x?10,?13.ÒÑÖªº¯Êýf(x)??1Èôa,b,c»¥²»ÏàµÈ£¬ÇÒf(a)?f(b)?f(c),ÔòabcµÄ

?x?6,x?10.??2ȡֵ·¶Î§Îª

?x2?1,x?0214.ÒÑÖªº¯Êýf(x)??,ÔòÂú×ã²»µÈʽf(1?x)?f(2x)µÄxµÄ·¶Î§____

?1,x?015£®Èô¹ØÓÚxµÄ·½³Ì22x?2x?a?a?1?0ÓÐʵ¸ù£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª_________

Èý£®½â´ðÌ⣨±¾´óÌâ¹²5Ì⣬ÿÌâ10·Ö£¬¹²50·Ö£© 16£®£¨1£©ÇóÖµ£ºlg5?22lg8?lg5?lg20?(lg2)2 3?14£¨2£©ÇóÖµ£º?0.0081??7?3????3?()0???81?0.25?(3)?8?8????11?3?12?10?0.027

13

17.ÒÑÖª¼¯ºÏA£½{x|x£­2x£­8¡Ü0£¬x¡ÊR}£¬B£½{x|x£­(2m£­3)x£«m£­3m¡Ü0£¬x¡ÊR£¬m¡ÊR }£® (1) ÈôA¡ÉB£½[2£¬4]£¬ÇóʵÊýmµÄÖµ£»

2

2

2

(2)ÉèÈ«¼¯ÎªR£¬ÈôA?RB£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

18£®º¯Êýy?lg(3?4x?x)µÄ¶¨ÒåÓòΪM£¬º¯Êýf(x)?4?2£¨1£©Çóº¯Êýf(x)µÄÖµÓò£»

£¨2£©µ±x?Mʱ£¬¹ØÓÚxµÄ·½³Ì4?2

19.ÒÑÖªa?0,ÇÒa?1£¬f?logax???xx?12xx?1£¨x?M£©.

?b(b?R)ÓÐÁ½²»µÈʵÊý¸ù£¬ÇóbµÄȡֵ·¶Î§.

1??a??x????. 2xa?1????£¨1£©Çóf(x)µÄ±í´ïʽ£¬²¢ÅÐ¶ÏÆäµ¥µ÷ÐÔ£»

(2 )µ±f(x)µÄ¶¨ÒåÓòΪ(?1,1)ʱ£¬½â¹ØÓÚmµÄ²»µÈʽf(1?m)?f(1?m)?0£» (3)Èôy=f(x)?4ÔÚ(??,2)ÉϺãΪ¸ºÖµ£¬ÇóaµÄȡֵ·¶Î§.

20.Éè¶þ´Îº¯Êýf(x)?ax?bx?c(a,b,c?R)Âú×ãÏÂÁÐÌõ¼þ£º ¢Ùµ±x¡ÊRʱ£¬f(x)µÄ×îСֵΪ0£¬ÇÒf (x£­1)=f(£­x£­1)³ÉÁ¢£» ¢Úµ±x¡Ê(0,5)ʱ£¬x¡Üf(x)¡Ü2x?1+1ºã³ÉÁ¢¡£ £¨1£©Çóf(1)£»£¨2£©Çóf(x)µÄ½âÎöʽ£»

£¨3£©Çó×î´óµÄʵÊým(m>1),ʹµÃ´æÔÚʵÊýt,Ö»Òªµ±x¡Ê?1,m?ʱ£¬¾ÍÓÐf(x?t)?x³ÉÁ¢.

22