内容发布更新时间 : 2024/12/23 9:32:35星期一 下面是文章的全部内容请认真阅读。
低成本。直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以代替。由于直流电气传动技术的研究和应用已达到比较成熟的地步,应用相当普遍,尤其是全数字直流系统的出现,更提高了直流调速系统的精度级可靠性。所以,今后一个阶段在调速要求较高的场合,如轧钢厂、海上钻井平台等,直流调速仍然处于主要地位。早期直流传动的控制系统采用模拟分离器件较多,使得模拟直流传动系统的控制精度及可靠性较低,随着计算机控制技术的发展,直流传动系统已经广泛使用微机,实现了全数字化控制。由于微机以数字信号工作,控制手段灵活方便,抗干扰能力强。所以,全数字直流天数控制精度和可靠性比模拟直流调速系统大大提高。而且通过系统总线全数字化控制系统,能与管理计算机、过程计算机、远程电控装置进行交换,实现生产过程的自动化分级控制。所以,直流传动控制采用微机实现全数字化,使直流调速系统进入一个崭新的阶段。
1.2题目国内外研究现状
直流电机问世已有一百四十多年的历史。在设计和制造技术上有很大进步, 新材料、新技术的应用以及整流电源的普及, 促进了一般工业用直流电机的不断扩大, 品种的日益繁多。从小至数瓦, 大到万余千瓦, 广泛地用于冶金、矿山、煤炭、起重运输、机床制造、纺织印染等各个部门中, 特别是近几年电子计算技术广泛应用在直流电机设计制造中。从直流电动机的演变历史, 也可以纵观直流电动机的发展历史和动向、从四十年代后期到五十年代的前期, 直流电动机的电源主要是采用M-G电动发电机组,六十年代初, 电动发电机组电源已被水银整流器逐渐代替, 到六十年代后期, 由于可控硅整流装置的出现, 并得到迅速发展, 可控硅整流电源已占统治地位。由于直流电源供电方式的不断更新换代, 特别是在最近的十几年期问, 进一步促使了直流电动机的单机功率、转速不断提高, 目前朝着高速、大功率方向发展。另外, 由于
绝缘技术和分析技术的进步, 直流电动机已迅速向小型轻量, 低惯量方面发展。
常用的控制直流电动机有以下几种:第一,最初的直流调速系统是采用恒定的直流电压向直流电动机电枢供电,通过改变电枢回路中的电阻来实现调速。这种方法简单易行设备制造方便,价格低廉。但缺点是效率低、机械特性软、不能在较宽范围内平滑调速,所以目前极少采用。第二,三十年代末,出现了发电机-电动机(也称为旋转变流组),配合采用磁放大器、电机扩大机、闸流管等控制器件,可获得优良的调速性能,如有较宽的调速范围(十比一至数十比一)、较小的转速变化率和调速平滑等,特别是当电动机减速时,可以通过发电机非常容易地将电动机轴上的飞轮惯量反馈给电网,这样,一方面可得到平滑的制动特性,另一方面又可减少能量的损耗,提高效率。但发电机、电动机调速系统的主要缺点是需要增加两台与调速电动机相当的旋转电机和一些辅助励磁设备,因而体积大,维修困难等。第三,自出现汞弧变流器后,利用汞弧变流器代替上述发电机、电动机系统,使调速性能指标又进一步提高。特别是它的系统快速响应性是发电机、电动机系统不能比拟的。但是汞弧变流器仍存在一些缺点:维修还是不太方便,特别是水银蒸汽对维护人员会造成一定的危害等。第四,1957年世界上出现了第一只晶闸管,与其它变流元件相比,晶闸管具有许多独特的优越性,因而晶闸管直流调速系统立即显示出强大的生命力。由于它具有体积小、响应快、工作可靠、寿命长、维修简便等一系列优点,采用晶闸管供电,不仅使直流调速系统经济指标上和可靠性有所提高,而且在技术性能上也显示出很大的优越性。晶闸管变流装置的放大倍数在10000以上,比机组(放大倍数10)高1000倍,比汞弧变流器(放大倍数1000)高10倍;在响应快速性上,机组是秒级,而晶闸管变流装置为毫秒级。
从20世纪80年代中后期起,以晶闸管整流装置取代了以往的直流发电机电动机组及水银整流装置,使直流电气传动完成一次大的跃进。同时,控制电路也实现了高度集成化、小型化、高可靠性及低成本。以上技术的应用,使直流调速系统的
性能指标大幅提高,应用范围不断扩大,直流调速技术不断发展。
随着微型计算机、超大规模集成电路、新型电子电力开关器件和新型传感器的出现,以及自动控制理论、电力电子技术、计算机控制技术的深入发展,直流电动机控制也装置不断向前发展。微机的应用使直流电气传动控制系统趋向于数字化、智能化,极大地推动了电气传动的发展。近年来,一些先进国家陆续推出并大量使用以微机为控制核心的直流电气传动装置,如西门子公司的SIMOREG K 6RA24、ABB公司的PAD/PSD等等。
随着现代化步伐的加快,人们生活水平的不断提高,对自动化的需求也越来越高,直流电动机应用领域也不断扩大。例如,军事和宇航方面的雷达天线,火炮瞄准,惯性导航,卫星姿态,飞船光电池对太阳得跟踪等控制;工业方面的各种加工中心,专用加工设备,数控机床,工业机器人,塑料机械,印刷机械,绕线机,纺织机械,工业缝纫机,泵和压缩机等设备的控制;计算机外围设备和办公设备中的各种磁盘驱动器,各种光盘驱动器,绘图仪,扫描仪,打印机,传真机,复印机等设备的控制;音像设备和家用电器中的录音机,录像机,数码相机,洗衣机,冰箱,电扇等的控制。
随着计算机,微电子技术的发展以及新型电力电子功率器件的不断涌现,电动机的控制策略也发生了深刻的变化。电动机控制技术的发展得力于微电子技术,电力电子技术,传感器技术,永磁材料技术,微机应用技术的最新发展成就。变频技术和脉宽调制技术已成为电动机控制的主流技术。正是这些技术的进步使电动控制技术在近二十年内发生了很大的变化。功率器件控制条件的变化和微电子技术的使用也使新型的电动机控制方法能够得到实现。其中,脉宽调制(PWM)方法,变频技术在直流调速和交流调速系统中得到了广泛应用。永磁材料技术的突破与微电子技术的结合又产生了一批新型的电动机,如永磁直流电动机,交流伺服电动机,超声波电动机等。由于有微处理器和传感器作为新一代运动控制系统的组成部分,所
以又称这种运动控制系统为智能运动控制系统。所以应用先进控制算法,开发全数字化智能运动控制系统将成为新一代运动控制系统设计的发展方向。
在那些对电动机控制系统的性能要求较高的场合(如数控机床,工业缝纫机,磁盘驱动器,打印机,传真机等设备中,要求电动机实现精确定位,适应剧烈负载变化),传统的控制算法已难以满足系统要求。为了适应时代的发展,现有的电动机控制系统也在朝着高精度,高性能,网络化,信息化,模糊化的方向不断前进。
脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。
微机,出现于20世纪70年代,随着大规模及超大规模集成电路制造工艺的迅速发展,微机的性能越来越高,价格越来越便宜。此外,电力电子的发展,使得大功率电子器件的性能迅速提高。因此就有可能比较普遍的应用微机来控制电机,完成各种新颖的、高性能的控制策略,使电机的各种潜在的能力得到充分的发挥,十点几的性能更符合使用要求,还可以制造出各种便于控制的新型电机,使电机出现新的面貌。比较简单的电机微机控制,只要用微机控制继电器或电子开关元件使电路开通或关断就可以了。在各种机床设备及生产流水线中,现在已普遍采用微机的可编程控制器,按一定的规律控制各类电机的动作。对于复杂的电机控制,则要用微机控制电机的电压、电流、转矩、转速、转角等等,使电机按给定的指令准确工作。通过微机控制,可是电机的性能有和大的提高。
1.3PWM控制技术简述
PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。由于当今科学技术的发展已经没有了
学科之间的界限,结合现代控制理论思想或实现无谐振波开关技术将会成为PWM控制技术发展的主要方向之一。随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。
目前,PWM整流控制技术的研究取得了一定的进展。在电压型PWM整流器控制技术方面,滞环电流控制、瞬时值比较法电流控制、固定开关频率的PWM控制、预测电流解耦控制、非线性系统反馈解耦控制、单周期控制、无电流传感器的三相PWM整流器控制策略均得到研究。
在电流型PWM整流控制方面,相继对电流型PWM整流器的Dalta调制、空间矢量调制、预测控制、电网不平衡条件下的控制、非线性控制进行了研究。
1.4完成目标
采用PWM控制控制技术,当按下中断独立键盘的正传和加速按钮的时候,单片机输出PWM信号给驱动电路,使得电机正向加速转动,与此同时由测速电路把转速反馈给单片机在显示器上显示出来。当按下反转和加速的时候电机反向加速转动,与此同时由测速电路把转速反馈给单片机在显示器上显示出来。如上所述,电机可完成正传、反转、加速、减速、停止、在显示器显示转速。