内容发布更新时间 : 2025/1/23 14:26:59星期一 下面是文章的全部内容请认真阅读。
常见连接体问题
(一) “死结”“活结” 1.如图甲所示,轻绳AD跨过固定在水平横梁BC右端的定滑轮挂住一个质量为10 kg的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,轻杆的G点用细绳GF拉住一个质量也为10 kg的物体.g取10 m/s2,求
(1)细绳AC段的张力FAC与细绳EG的张力FEG之比;
(2)轻杆BC对C端的支持力; (3)轻杆HG对G端的支持力.
(二) 突变问题
2。在动摩擦因数μ=0.2的水平
质量为m=1kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳 一端相连,如图所示,此时小球处于静止 平衡状态,且水平面对小球的弹力恰好为 零,当剪断轻绳的瞬间,取g=10m/s2, 求:
(1)此时轻弹簧的弹力大小 (2)小球的加速度大小和方向.
(三) 力的合成与分解
3.如图所示,用一根细线系住重力为、半径
为
的球,其与倾角为
的光滑斜面劈接触,
处于静止状态,球与斜面的接触面非常小, 当细线悬点
固定不动,斜面劈缓慢水平向左
移动直至绳子与斜面平行的过程中,下述正确 的是( ).
A.细绳对球的拉力先减小后增大 B.细绳对球的拉力先增大后减小 C.细绳对球的拉力一直减小 D.细绳对球的拉力最小值等于G
(四) 整体法
4. 如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接。在力F的作用下一起沿水平方 向做匀速直线运动(m1在地面,m2在空中), 力F与水平方向成θ角,则m1所受支持力N 和摩擦力f正确的是() A.N=m1g+m2g-Fsinθ B.N=m1g+m2g-Fcosθ C.f=Fcosθ D.f=Fsinθ
(五) 隔离法
5.如图所示,水平放置的木板上面放置木块, 木板与木块、木板与地面间的摩擦因数分别为 μ1和μ2。已知木块质量为m,木板的质量为 M,用定滑轮连接如图所示,现用力F匀速拉 动木块在木板上向右滑行,求力F的大小?
6.跨过定滑轮的绳的一端挂一吊板,另一端 被吊板上的人拉住,已知人的质量为70 kg, 吊板的质量为10 kg,绳及定滑轮的质量,滑 轮的摩擦均可不计,取重力加速度g=10 m/s2 ,当人以440 N的力拉绳时,人与吊板的加 速度a和人对吊板的压力F分别为() A.a=1 m/s2,FN=260 N B.a=1 m/s2,FN=330 N
C.a=3 m/s2,FN=110 N D.a=3 m/s2,FN=50 N
7.如图所示,静止在水平面上的三角架的质 量为M,它中间用两根质量不计的轻质弹簧 连着一质量为m的小球,当小球上下振动, 三角架对水平面的压力为零的时刻,小球加 速度的方向与大小是()
MgA.向下,m
B.向上,g C.向下,g
(M?m)gD.向下,m
(六) 综合
8. 如图所示,一夹子夹住木块,在力F作用 下向上提升,夹子和木块的质量分别为m、 M,夹子与木块两侧间的最大静摩擦均为f, 若木块不滑动,力F的最大值是( )
答案
1。
(1)图甲中轻绳AD跨过定滑轮拉住质量为M1 的物体,物体处于平衡状态, 绳AC段的拉力FAC=FCD=M1g
图乙中由FEGsin30°=M2g得FEG=2M2g 所以得
(2)图甲中,根据几何关系得: FC=FAC=M1g=100 N,
方向和水平方向成30°向斜右上方 (3)图乙中,根据平衡方程有
FEGsin30°=M2g;FEGcos30°=FG 所以FG=M2gcot30°=M2g≈173 N,
向水平向右
2。
由平衡条件得:
竖直方向:Fcosθ=mg 水平方向:Fsinθ=T 解得:T=mgtanθ=10N
当剪断轻绳瞬间弹簧的弹力大小不变,仍为10N;
(2)剪断轻绳后小球在竖直方向仍平衡, 水平面支持力与重力平衡:N=mg 由牛顿第二定律得:T-μN=ma 解得:a=8m/s2 方向向左. 答:(1)此时轻弹簧的弹力大小为10N; (2)小球的加速度大小为8m/s2,方向向左. 3.C 4.AC
5.2?1mg??2(M?m)g 6。B 7.D 8.
2f(m+M)
M