数学建模电梯调度问题 下载本文

内容发布更新时间 : 2024/12/25 1:18:58星期一 下面是文章的全部内容请认真阅读。

WORD整理版

电 专业资料学习参考

梯 调 度 问 题

WORD整理版

电梯调度问题

摘要:

本题为一个电梯调度的优化问题,在一栋特定的写字楼内,利用现有的电梯资源,如何使用电梯能提高它的最大运输量,在人流密度十分大的情况下,如何更快的疏通人流成为一个备受关注的问题。为了评价一个电梯群系统的运作效率,及运载能力,在第一问中,我们用层次分析发,从效益、成本两大方面给出了六个分立的小指标,一同构成电梯群运载效率的指标体系。对第二问,本文根据题目情况的特殊性,定义忙期作为目标函数,对该电梯调度问题建立非线性规划模型,最后用遗传算法对模型求解。第三问中,本文将模型回归实际,分析假设对模型结果的影响,给出改进方案。

对于问题一,本文用评价方法中的层次分析法对电梯群系统的运作效率及运载能力进行分析。经分析,本文最终确定平均候梯时间、最长候车时间、平均行程时间、平均运营人数(服务强度)、平均服务时间及停站次数这六个指标作为电梯调度的指标体系。在这些评价指标的基础上,本文细化评价过程,给出完整的评价方案:首先,采用极差变换法对评价指标做无量纲化处理。然后,采用综合评价法对模型进行评价。在这个过程中,本文采用受人主观影响较小的夹角余弦法来确定权重系数。

对于第二问,本文建立非线性优化模型。借鉴排队论的思想,本文定义忙期,构造了针对本题中特定情形的简单数学表达式,作为目标函数。利用matlab软件,采用遗传算法对模型求解。多次运行可得到多个结果,然后用第一问中的评价模型进行评价,最终选出较优方案。最得到如下方案:

第一个电梯可停层数为:1,2,3,4,5,6,7,10,14,15,16,19,20,22

专业资料学习参考

WORD整理版

第二个电梯可停层数:1,4,5,7,10,13,16,18,19,20,21 第三个电梯可停层数:1,2,3,4,6,8,10,11,12,15,16,20,22 第四个电梯可停层数:1,2,3,4,7,10,11,17,18,19,21,22 第五个电梯可停层数:1,2,4,7,8,9,17,18,19,20,21 第六个电梯可停层数:1,4,5,6,7,8,9,11,13,18,19,20 此方案平均忙期为:15.3分钟。

对于第三问,本文是从每分钟到达人群数的分布角度改进模型的。第二问中假设在忙期,每分到达人数服从均匀分布,而在实际中,我们可以首先对此进行调查统计,跟据统计数据可以拟合出更符合实际分布函数,可以改进结果。 关键字:电梯调度;层次分析;非线性规划;神经网络;极差法;夹角余弦

一、 问题重述

随着社会经济的持续发展,高层建筑的数量不断增加,其建设高度更令人瞩目,电梯也开始为高层建筑的垂直交通提供保障。然而建筑高度的提升使电梯交通系统需求变得越来越复杂,有效的电梯垂直交通系统面临许多挑战。其中,人们在要求减少电梯设备占用建筑物的核心空间的同时,要求电梯交通系统的服务数量和质量有大幅度提高。特别在工作日里每天早晚上下班高峰期,电梯是非常拥挤的。如何对现有资源合理利用,缓解电梯的运输压力,缩短人们的等待时间,是高层建筑垂直交通系统所必须解决的问题。由此便产生了电梯的调度问题。我们将针对对早晚高峰期的人流情况,对电梯调度问题建立数学模型,以期获得合理的优化方案。本文考虑解决以下问题:

1. 2.

给出若干合理的模型评价指标

针对该特定写字楼的简化情况给出一个合理的调度方案

专业资料学习参考