2019年高三数学(理)人教版一轮训练:第十一篇第1节数系的扩充与复数的引入 下载本文

内容发布更新时间 : 2025/1/3 23:47:01星期一 下面是文章的全部内容请认真阅读。

哈哈哈哈哈哈哈哈你好好啊第十一篇 复数、算法、推理与证明(必修3、选修22)

第1节 数系的扩充与复数的引入

【选题明细表】

知识点、方法 复数的有关概念、复数代数形式的运算 复数的几何意义 复数的综合应用 基础巩固(时间:30分钟)

1.(2017·渭南市一模)已知复数z=(A)-2i (B)-i (C)2i (D)i 解析:z=

=

==i,则=-i.故选B.

的虚部是( B )

,则等于( B )

题号 1,2,4,7,9,12,13,14 3,11 5,6,8,10 2.(2017·张掖市三模)复数(A) (B)- (C) i (D)- i 解析:因为所以复数

=

=-i,

的虚部是-.故选B.

(i为虚数单位),

3.(2017·菏泽市一模)若复数z满足z-1=

和任何人呵呵呵 哈哈哈哈哈哈哈哈你好好啊则z在复平面内对应的点位于( D ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 解析:z-1=

=

=

=-2i,所以z=1-2i,z在复平

面内对应的点(1,-2)位于第四象限.故选D.

4.(2017·天津和平区四模)设a为实数,i是虚数单位,若实数,则a等于( B ) (A)-1 (B)1 (C) 2 (D)-3 解析:因为

+

=

a+

为实数,i=

+

=

是虚数单位,且+

是实数,所以1-a=0,

+

所以a=1.故选B.

5.定义:若z2=a+bi(a,b∈R,i为虚数单位),则称复数z是复数a+bi的平方根.根据定义,则复数-3+4i的平方根是( B ) (A)1-2i或-1+2i (B)1+2i或-1-2i (C)-7-24i (D)7+24i 解析:设(x+yi)2=-3+4i,则解得

故选B.

=A+Bi,(m,A,B∈

6.(2017·丹东市、鞍山市、营口市一模)复数R),且A+B=0,则m的值是( C )

和任何人呵呵呵 哈哈哈哈哈哈哈哈你好好啊(A) (B) (C)- (D)2 解析:因为

=A+Bi,所以2-mi=(A+Bi)(1+2i),

可得A-2B=2,2A+B=-m , 解得 5(A+B)=-3m-2=0, 所以m=-.故选C.

7.(2017·成都市一诊)设复数z满足-iz=(3+2i)(1-i)(其中i为虚数单位),则z= .

解析:复数z满足-iz=(3+2i)(1-i)(其中i为虚数单位), 所以-iz=5-i,所以-i·iz=(5-i)i,化为z=5i+1. 答案:1+5i

8.已知复数z=x+yi,且|z-2|=,则的最大值为 . 解析:因为|z-2|=()max==.

=

,所以(x-2)2+y2=3. 由图可知

答案:

能力提升(时间:15分钟)

9.(2017·龙岩市一模)已知纯虚数z满足(1-2i)z=1+ai,则实数a等于( A ) (A) (B)- (C)-2 (D)2

和任何人呵呵呵