内容发布更新时间 : 2025/2/24 16:43:23星期一 下面是文章的全部内容请认真阅读。
古典概型与几何概型
高考频度:★★★★☆ 难易程度:★★★☆☆ 典例在线
(1)甲盒子装有分别标有数字1,2,3,4的4张卡片,乙盒子装有
分别标有数字2,5的2张卡片,若从两个盒子中各随机地摸取出1张卡片,则2张卡片上的数字为相邻数字的概率为 A. C.
B. D.
(2)某学校星期一至星期五每天上午都安排五节课,每节课的时间
为40分钟.第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间到达教室,则他听第二节课的时间不少于10分钟的概率是 A. C.
B. D.
(3)一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行,若
蜜蜂在飞行过程中与正方体玻璃容器六个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全,即始终保持与正方体玻璃容器六个表面的距离均大于10,飞行才是安全的.假设蜜蜂在正方体玻璃容器内飞行到任意位置的可能性相等,那么蜜蜂飞行安全的概率是 A.
B.
C. D.
【参考答案】(1)B;(2)A;(3)C.
(2)由题意得第二节课上课的时间为8:40~9:20,该同学到达教室的时间总长度为40,其中在8:50~9:10进入教室时,听第二节课的时间不少于10分钟,其时间长度为20,故所求概率为
,故选A.
(3)记“蜜蜂能够安全飞行”为事件A,则它在与正方体玻璃容器六个表面的距离均大于10的区域d内飞行时是安全的,故区域d为棱长为10的正方体,所以
,故选C.
【解题必备】(1)求解古典概型的关键是求试验的基本事件的总数和事件A包含的基本事件的个数,这就需要正确列出基本事件.基本事件的表示方法有列举法、列表法和树状图法,具体应用时可根据需要灵活选择.求古典概型的基本步骤:①算出所有基本事件的个数;②求出事件包含的所有基本事件数;③代入公式
.
(2)对于求较复杂事件的古典概型的概率问题,可以将所求事件转化成彼此互斥的事件的和,或者先求对立事件的概率,再用互斥事件的概率加法公式或对立事件的概率公式求出所求事件的概率.解决与古典概型交汇命题的问题时,把相关的知识转化为事件,列举基本事
,求出
件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.
(3)求解与长度有关的几何概型的问题的关键是将所有基本事件及事件包含的基本事件转化为相应长度,进而求解.此处的“长度”可以是线段的长短,也可以是时间的长短等.注意:在寻找事件发生对应的区域时,确定边界点是问题的关键,但边界点能否取到不会影响事件的概率.
(4)求解与面积有关的几何概型的问题的关键是构造出随机事件对应的几何图形,利用图形的几何特征找出两个“面积”,套用几何概型的概率计算公式,从而求得随机事件的概率.必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.“面积比”是求几何概型的一种重要的方法. (5)用体积计算概率时,要注意所求概率与所求事件构成的区域的体积的关系,准确计算出所求事件构成的区域的体积,确定出基本事件构成的区域的体积,求体积比即可.一般当所给随机事件是用三个连续变量进行描述或当概率问题涉及体积时,可以考虑用此方法求解. 学霸推荐
1.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食落在圆锥外面”的概率是