2018年佛山市小升初数学模拟试题(共8套)详细答案 下载本文

内容发布更新时间 : 2024/11/15 15:05:22星期一 下面是文章的全部内容请认真阅读。

答:恰好是3、5、7中两个数的倍数的数共有 228个. 故答案为:228.

1到2008这2008个自然数中,3和5的倍数有 【分析】

个,5和7的倍数有

个,3、5和7的倍数有

3和7的倍数有 个,

个.所以,恰好是3、5、7中

两个数的倍数共有133﹣19+95﹣19+57﹣19=228个. 4、

【答案】3

【考点】二元一次方程组的求解,工程问题

【解析】【解答】解::设A型机床每天能完成x,B型机床每天完成y,C型机床每天完成z,则根据题目条件有以下等式:

则 ,

若3种机床各取一台工作5天后完成: ( = =

)×5

剩下A、C型机床继续工作,还需要的天数是: (1 -) ÷= =

=3(天);

答:还需要3天完成任务.故答案为:3.

【分析】把这项任务看作单位“1”,根据工作量÷工作时间=工作效率,分别求出A、B、C三种机床每台每天的工作效率,再求出3种机床各取一台工作5天后,剩下的工作量,然后用剩下的工作量除以A、C两种机床的工作效率和即可.据此解答. 二、填空题(每题6分)

- 41 - / 97

5、

【答案】100

【考点】百分数的实际应用 【解析】【解答】解:10%﹣5%=5% 15%﹣10%=5% 13÷(8%+5%) =13÷13% =100(万元)

答:第一次捐了100万元. 故答案为:100.

【分析】两地捐赠资金分别增加10%和5%,则总捐资额增加8%,如果再在这个基础上两地增加第一次捐资的5%,那么两地捐赠资金分别增加到15%和10%,总量增加到8%+5%=13%,所以第一次李先生捐资13÷13%=100万. 6、

【答案】1123 【考点】最大与最小

【解析】【解答】解:设设中间数是a,五个数分别是a﹣2,a﹣1,a,a+1,a+2; 明显可以得到a﹣2+a﹣1+a+a+1+a+2=5a,

由于5a是平方数,所以平方数的尾数一定是5或者0,

再由3a是立方数,所以a﹣1+a+a+1=3a,所以立方数一定是3的倍数.

23

所以这个数a一定是3×5=1125,

所以最小数是1125﹣2=1123.

答:这5个数中最小数的最小值为1123.

【分析】设中间数是a,则它们的和为5a,中间三数的和为3a.因为5a是平方数,所以平方数的尾数一定是5或者0;再由中间三数为立方数,所以a﹣1+a+a+1=3a,所以立方数一定是3的倍数.中间的数至少是1125,那么这五个数中最小数的最小值为1123. 7、

【答案】108 【考点】最大与最小

【解析】【解答】解:基于以上分析,n个数分成13个序列,每条序列的长度为

,两

个长度差为1的序列,能够被取得的数的个数也不会超过1,所以能使57个数任意两个数都不等于13,则这57个数被分配在13条序列中,当n取最小值时在每条序列被分配的数的个数差不会超过1,那么13个序列有8个分配了4个数,5个分配了5个数,这13个序列8个长度为8,5个长度为9,那么n=8×8+9×5=109,所以要使57个数必有两个数的差为13,那么n的最大值为108. 故答案为:108.

【分析】被13除的同余序列当中,如余1的同余序列,1、14、27、40、53、66…,中只要取到两个相邻的,这两个数的差为13,如果没有两个相邻的数,则没有两个数的差为13,不同的同余序列当中不可能

- 42 - / 97

有两个数的差为13,对于任意一条长度为x的序列,都最多能取 1个

基于以上,n个数分成13个序列,每条序列的长度为

个数,即从第1个数起隔1个取

,两个长度差为1的序列,能够

被取得的数的个数也不会超过1,所以能使57个数任意两个数都不等于13,则这57个数被分配在13条序列中,当n取最小值时在每条序列被分配的数的个数差不会超过1,那么13个序列有8个分配了4个数,5个分配了5个数,这13个序列8个长度为8,5个长度为9,那么n=8×8+9×5=109,所以要使57个数必有两个数的差为13,那么n的最大值为108. 8、

【答案】48

【考点】长方形、正方形的面积

【解析】【解答】解:如图所示,设左上角小长方形的长为a,右下角小长方形的长为b,

四个空白三角形的面积是:

[(10﹣b)(10﹣a)+(6﹣a)b+(a+4)(b+1)+(9﹣b)a]÷2 =[100﹣10a﹣10b+ab+6b﹣ab+ab+a+4b+4+9a﹣ab]÷2 =104÷2

=52(平方厘米) 阴影部分的面积是 10×10﹣52 =100﹣52 =48(平方厘米)

答:阴影部分的面积是48平方厘米. 故答案为:48.

【分析】图中阴影部分的面积是正方形的面积减去4个空白三角形的面积,据此解答. 9、

【答案】17 【考点】容斥原理

【解析】【解答】解:只参加合唱的和只参加跳舞的人数和为:50﹣10=40(人), 所以只参加合唱的有10人,那么只参加跳舞的人数为30人,

所以参加了合唱的人中同时参加了演奏、合唱但没有参加跳舞的有:40﹣10﹣10﹣3=17(人),

- 43 - / 97

答:同时参加了演奏、合唱但没有参加跳舞的有17人. 故答案为:17.

【分析】用韦恩图可以清晰的呈现各个集合之间的数量关系:设只参加合唱的有x人,那么只参加跳舞的人数为3x,由50人没有参加演奏,10人同时参加了跳舞和合唱但没有参加演奏,得到只参加合唱的和只参加跳舞的人数和为50﹣10=40,所以只参加合唱的有10人,那么只参加跳舞的人数为30人,又由“同时参加三种节目的人比只参加合唱的人少7人”,得到同时参加三项的有3人,所以参加了合唱的人中同时参加了演奏、合唱但没有参加跳舞的有:40﹣10﹣10﹣3=17人. 三、填空题(每题6分) 10、

【答案】11.2 【考点】简单的行程问题

【解析】【解答】解:设速度降为每小时2千米后的1小时中,上山时间为x小时,下山为1﹣x小时, 所以2x﹣4(1﹣x)=0.2, 6x﹣4=0.2 6x﹣4+4=0.2+4 6x=4.2 6x÷6=4.2÷6 x=0.7

0.7小时=42分钟,

因为“下山比上山少用了42分钟”,

所以以每小时4千米的速度下山的时间和以每小时3千米的速度登山时间相等, 所以下山距离与A点以下路程之比为3:4, 所以A点以上距离是下山距离的, 所以往返一共走了: 0.7×2÷×2 =1.4 ÷x2 =5.6×2 =11.2(千米)

答:他往返共走了11.2千米. 故答案为:11.2.

【分析】首先关注“在接下来的1小时中”,这一小时中,下山比上山少200米,设上山时间为x小时,则下山的时间为1﹣x小时;然后根据下山比上山少200米,可得2x﹣4(1﹣x)=0.2,解得x=0.7小时,即42分钟,这42分钟,行程1.4公里;最后根据“下山比上山少用了42分钟”,可得以每小时4千米的速度下山的时间和以每小时3千米的速度登山时间相等,所以下山距离与A点以下路程之比为3:4,所以A点以上距离是下山距离的, 所以往返一共走了

千米,据此解答即可.

- 44 - / 97

11、

【答案】8

【考点】染色问题,排列组合

【解析】【解答】解:三个红色方格中所填的数都是它们所在行中最大的数,因此它们不可能是1和2. 又因为M是红格中的最小数,所以它们不可能是8和9,即M不可能是1、2、8、9. 同理,m也不可能是1、2、8、9.

这样M与m都介于3与7之间.因此M﹣m的差就介于3﹣7与7﹣3之间(包括﹣4与4). 因此,考虑正负可以取到:﹣4、﹣3、﹣2、﹣1、1、2、3、4. 所以,共有8种不同的值. 答:M﹣m可以取到8个不同的值. 故答案为:8.

【分析】共有三行,三个红色方格中所填的数都是它们所在行中最大的数,因此它们不可能是1和2.又因为M是红格中的最小数,所以它们不可能是8和9,即M不可能是1、2、8、9同理,m也不可能是1、2、8、9.这样M与m都介于3与7之间.因此M﹣m的差就介于3﹣7与7﹣3之间(包括﹣4与4).据此解答即可. 12、

【答案】1728 【考点】排列组合

【解析】【解答】解:这8个数之间如果有公因数,那么无非是2或3. 8个数中的4个偶数一定不能相邻,考虑使用“插入法”,

即首先忽略偶数的存在,对奇数进行排列,然后将偶数插入,但在偶数插入时,还要考虑3和6相邻的情况.

奇数的排列一共有:4!=24(种),

对任意一种排列4个数形成5个空位,将6插入,可以有符合条件的3个位置可以插,再在剩下的四个位置中插入2、4、8,一共有4×3×2=24(种), 综上所述,一共有:24×3×24=1728(种). 答:使得相邻两数互质的排列方式共有 1728种. 故答案为:1728.

【分析】这8个数之间如果有公因数,那么无非是2或3.

8个数中的4个偶数一定不能相邻,对于这类多个元素不相邻的排列问题,考虑使用“插入法”,即首先忽略偶数的存在,对奇数进行排列,然后将偶数插入,但在偶数插入时,还要考虑3和6相邻的情况. 奇数的排列一共有4!=24种,对任意一种排列4个数形成5个空位,将6插入,可以有符合条件的3个位置可以插,再在剩下的四个位置中插入2、4、8,一共有4×3×2=24种,一共有24×3×24=1728种. 13、

【答案】119

【考点】加法和减法的关系 【解析】【解答】解:一位数的和谐数个数为0, 三位数和谐数共有:10+9+8+…+2=54个.

- 45 - / 97