内容发布更新时间 : 2025/1/10 4:28:20星期一 下面是文章的全部内容请认真阅读。
第49页 习题1-51 计算下列极限
x2?5 (1)lim
x?2x?3x2?5
将x?2代入到中,由于解析式有意义,因此
x?3x2?522?5???9 limx?2x?32?3x2?3 (2)lim2
x?3x?1x2?3
将x?3代入到解析式2中,解析式有意义,因此
x?1
x?3 lim2?x?3x?12?3??3?0 ?3??122x2?2x?1 (3)lim
x?1x2?1 将x?1代入到解析式中,分子为0,分母为0,因此该极限为
0型,因式分解,可得 0?x?1??lim?x?1??0?0x2?2x?1?lim lim
x?1x?1?x?1??x?1?x?1?x?1?x2?124x3?2x2?x (4)lim
x?03x2?2x 将x?0代入到解析式中,分子为0,分母为0. 因此该极限为
20型,因式分解,可得 0x?4x2?2x?1?4x2?2x?1?1?4x3?2x2?xlim?lim?lim? x?0x?0x?03x2?2xx?3x?2?2?3x?2??x?h? (5)limh?02?x2h
将h?0代入到解析式中,分子为0,分母为0. 因此该极限为
0型,因式分解,可得 0?x?h? limh?022?xhx?hh?2??lim?h?0h?h0l?imx?2h?? 2x(6)lim?2??x???11??2? xx??1??2?,?0lim????0 x??x??x2x???? 由于lim2?2,lim??x?? 因此由极限四则运算法则可知 lim?2?x????11??1??2??2??lim2?lim????lim?2??2?0?0?2
x??xx?x???x?x???x?x2?1(7)lim2
x??2x?x?1 当x??时,分子??,分母??,因此该极限为最高次项,也就是x,再利用极限四则运算法则,可知:
2?型,分子分母同时除以x的?1x?11?01x??x??x2lim2?lim??? x??2x?x?1x??11112??2lim2?lim?lim22?0?02x??x??xx??xxx21?1x2lim1?limx2?x(8)lim4
x??x?3x2?1当x??时,分子??,分母??,因此该极限为高次项,也就是x,再利用极限四则运算法则,可知:
4?型,分子分母同时除以x的最?1111?lim?lim23x?x0?0x??x2x??x3xxlim4?lim???0
x??x?3x2?1x??11311?0?01?32?4lim1?lim2?lim4x??x??xx??xxx2x2?6x?8 (9)lim2
x?4x?5x?4 x?4代入到解析式中,分子为0,分母为0. 因此该极限为
0型,因式分解,可得 0?x?2??x?4??limx?2?4?2?2 x2?6x?8lim2?limx?4x?5x?4x?4?x?1??x?4?x?4x?14?13
(10)lim?1??x???1??1? 2???2?x??x?由于lim?1??x???1?1??,?1lim2??2 ??2?x??x?x??因此由极限四则运算法则可知
1?1??1???1??lim?1???2?2?=lim?1???lim?2?2??1?2?2 x??x?x???x?x???x??x?? (11)lim?1??n???111???...?n? 242?1?qn(等比数列求和公式为Sn?a1?,a1为首项,q为公比)
1?q?1?1???1112?n??1?? 1???...12421?2 lim1??n?11?????2?1n?1?
2???n???111?1????...?n??lim?2?1??n?1242?n???2?n?1??lim?2? ??n??2??2(12)lim??1?2?3?...?(n?1)?? 2n??n??n?a1?an?) 2 (等差数列求和公式为Sn?n?1?n?1?n2? 1?2?3?...?(n?1)?22n2?1?2?3?...?(n?1)?2?1 ?lim lim??n??2n??n2n2??(13)lim?
??n?1??n?2??n?3???1li?mn?1n?2n??31n?1?n2lim???lim?lim?????3n??n??nn??nn??nn5n5nn5?????n311lim?????111??n55??n?1??n?2??n?3??? 3n??5n??(14)lim?3??1 ?3?x?11?x1?x??