2013年高考理科数学全国新课标卷1(附答案) 下载本文

内容发布更新时间 : 2024/11/18 6:29:30星期一 下面是文章的全部内容请认真阅读。

2013年普通高等学校夏季招生全国统一考试数学理工农医类

(全国卷I新课标)

注意事项:

1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.

第Ⅰ卷

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,理1)已知集合A={x|x2-2x>0},B={x|-5<x<5},则( ). A.A∩B= B.A∪B=R C.B?A D.A?B

2.(2013课标全国Ⅰ,理2)若复数z满足(3-4i)z=|4+3i|,则z的虚部为( ).

A.-4 B.?A.

500π3866π3

cm B.cm 33

44 C.4 D. 557.(2013课标全国Ⅰ,理7)设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=( ).

A.3 B.4 C.5 D.6

8.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).

3.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).

A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样

x2y254.(2013课标全国Ⅰ,理4)已知双曲线C:2?2=1(a>0,b>0)的离心率为,则C的渐近线方程为( ).

ab211A.y=?x B.y=?x

341C.y=?x D.y=±x

2

5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( ).

A.16+8π B.8+8π C.16+16π D.8+16π

9.(2013课标全国Ⅰ,理9)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m1展开式的二项式系数的最大值为b.若13a=7b,则m=( ).

A.5 B.6 C.7 D.8

x2y210.(2013课标全国Ⅰ,理10)已知椭圆E:2?2=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两

ab点.若AB的中点坐标为(1,-1),则E的方程为( ).

x2y2x2y2?=1 B.?=1 A.

45363627x2y2x2y2?=1 D.?=1 C.

2718189A.[-3,4] B.[-5,2]

C.[-4,3] D.[-2,5]

6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为( ).

??x2?2x,x?0,11.(2013课标全国Ⅰ,理11)已知函数f(x)=?若|f(x)|≥ax,则a的取值范围是( ).

?ln(x?1),x?0.A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]

12.(2013课标全国Ⅰ,理12)设△AnBnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Sn,n=1,2,3,….若b1>c1,b1+c1=2a1,an+1=an,bn+1=

A.{Sn}为递减数列

cn?anb?an,cn+1=n,则( ). 22 第 1 页 共 1 页

B.{Sn}为递增数列

C.{S2n-1}为递增数列,{S2n}为递减数列 D.{S2n-1}为递减数列,{S2n}为递增数列

第Ⅱ卷

本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.

二、填空题:本大题共4小题,每小题5分.

13.(2013课标全国Ⅰ,理13)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b.若b·c=0,则t=__________. 14.(2013课标全国Ⅰ,理14)若数列{an}的前n项和Sn?21an?,则{an}的通项公式是an=__________. 3315.(2013课标全国Ⅰ,理15)设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=__________.

16.(2013课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为__________.

三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC中,∠ABC=90°,AB=3,BC=1,P为△ABC内一点,∠BPC=90°.

19.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.

假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为

1,且各件产品是否为优质品相互独2(1)若PB=

1,求PA; 2

(2)若∠APB=150°,求tan∠PBA.

18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.

(1)证明:AB⊥A1C;

(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.

立.

(1)求这批产品通过检验的概率;

(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.

20.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.

(1)求C的方程;

(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.

第 2 页 共 2 页

21.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.

(1)求a,b,c,d的值;

(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.

请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑. 22.(2013课标全国Ⅰ,理22)(本小题满分10分)选修4—1:几何证明选讲

如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.

(1)当a=-2时,求不等式f(x)<g(x)的解集; (2)设a>-1,且当x∈???a1?,?时,f(x)≤g(x),求a的取值范围. ?22?(1)证明:DB=DC;

(2)设圆的半径为1,BC=3,延长CE交AB于点F,求△BCF外接圆的半径.

23.(2013课标全国Ⅰ,理23)(本小题满分10分)选修4—4:坐标系与参数方程

?x?4?5cost,已知曲线C1的参数方程为?(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,

y?5?5sint?曲线C2的极坐标方程为ρ=2sin θ.

(1)把C1的参数方程化为极坐标方程;

(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

24.(2013课标全国Ⅰ,理24)(本小题满分10分)选修4—5:不等式选讲

已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.

第 3 页 共 3 页