实验三:A星算法求解8数码问题实验讲解 下载本文

内容发布更新时间 : 2025/1/23 10:29:58星期一 下面是文章的全部内容请认真阅读。

实验三:A*算法求解8数码问题实验

一、 实验目的

熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解N数码难题,理解求解流程和搜索顺序。

二、 实验内容 1、

八数码问题描述

所谓八数码问题起源于一种游戏:在一个3×3的方阵中放入八个数码1、2、3、4、5、6、7、8,其中一个单元格是空的。将任意摆放的数码盘(城初始状态)逐步摆成某个指定的数码盘的排列(目标状态),如图1所示

图1 八数码问题的某个初始状态和目标状态

对于以上问题,我们可以把数码的移动等效城空格的移动。如图1的初始排列,数码7右移等于空格左移。那么对于每一个排列,可能的一次数码移动最多只有4中,即空格左移、空格右移、空格上移、空格下移。最少有两种(当空格位于方阵的4个角时)。所以,问题

1

就转换成如何从初始状态开始,使空格经过最小的移动次数最后排列成目标状态。 2、

八数码问题的求解算法

2.1 盲目搜索

宽度优先搜索算法、深度优先搜索算法 2.2 启发式搜索

启发式搜索算法的基本思想是:定义一个评价函数f,对当前的搜索状态进行评估,找出一个最有希望的节点来扩展。 先定义下面几个函数的含义: f*(n)=g*(n)+h*(n) (1)

式中g*(n)表示从初始节点s到当前节点n的最短路径的耗散值;h*(n)表示从当前节点n到目标节点g的最短路径的耗散值,f*(n)表示从初始节点s经过n到目标节点g的最短路径的耗散值。 评价函数的形式可定义如(2)式所示: f(n)=g(n)+h(n) (2)

其中n是被评价的当前节点。f(n)、g(n)和h(n)分别表示是对f*(n)、g*(n)和h*(n)3个函数值的估计值。

利用评价函数f(n)=g(n)+h(n)来排列OPEN表节点顺序的图搜索算法称为算法A。在A算法中,如果对所有的x, h(x)<=h*(x) (3)

成立,则称好h(x)为h*(x)的下界,它表示某种偏于保守的估计。

2

采用h*(x)的下界h(x)为启发函数的A算法,称为A*算法。 针对八数码问题启发函数设计如下:

f(n)=d(n)+p(n) (4)

其中A*算法中的g(n)根据具体情况设计为d(n),意为n节点的深度,而h(n)设计为

3