离子膜烧碱工艺流程 下载本文

内容发布更新时间 : 2024/12/25 12:33:22星期一 下面是文章的全部内容请认真阅读。

离子膜烧碱工艺流程

http://bbs.hcbbs.com/thread-437527-1-1.html CAD

邢家悟主编《离子膜法制烧碱操作问答》(化学工业出版社,2009年7月)

第一章 盐水精制甲元 1.盐水精制的目的

氯碱工业生产过程中,无论采用海盐、湖盐、岩盐或卤水中的哪一种原料,都含有Ca2+、Mg2+、SO2-等无机杂质,以及细菌、藻类残体、腐殖酸等天然有机物和机械杂质。这些杂质在化盐时会被带入盐水系统中,如不去除将会造成离子膜的损伤,从而使其效率下降,破坏电解槽的正常生产,并使离子膜的寿命大幅度缩短。盐水中一些杂质会在电解槽中产生副反应,降低阳极电流效率,并对阳极寿命产生影响。因此,盐水必须进行精制操作除去盐水中的大量杂质,生产满足离子膜电解槽运行要求的精制盐水。

2.盐水精制工艺简述

直至20世纪70年代中期,传统絮凝沉降盐水精制工艺基本上没有实质性发展;目前用于离子膜法电解的盐水精制工艺是在上述方法基础上增加二次过滤和二次精制先进工艺技术形成的。其工艺流程为∶饱和粗盐水加入精制反应剂,经过精制反应后加入絮凝剂进入澄清桶澄清,澄清盐水经砂滤器粗滤后,再经α-纤维素预涂碳素管过滤器二次过滤,使盐水中的悬浮物小于1×10-6,然后进入离子交换树脂塔,进行二次精制,得到满足离子膜电解槽运行要求的精制盐水。其工艺流程简图如图1所示。

第二章 电解单元

92.离子膜电解槽电解反应的基本原理

离子膜电解槽电解反应的基本原理是将电能转换为化学能,将盐水电解,生成NaOH、Cl2、H2,如图20所示,在离子膜电解槽阳极室(图示左侧),盐水在离子膜电

1

解槽中电离成Na+和Cl-,其中Na+在电荷作用下,通过具有选择性的阳离子膜迁移到阴极室(图示右侧),留下的Cl-在阳极电解作用下生成氯气。阴极室内的H2O电离成为H+和OH-,其中OH-被具有选择性的阳离子挡在阴极室与从阳极室过来的Na+结合成为产物NaOH,H+在阴极电解作用下生成氢气。

93.离子膜电解槽的类型

离子膜电解槽按照单元槽的结构形式不同,分为单极式离子膜电解槽(图21)和复极式离子膜电解槽(图22)。单极式离子膜电解槽是指在一个单元槽上只有一种电极,即单元槽是阳极单元槽或阴极单元槽,不存在一个单元槽上既有阳极又有阴极的情况。复极式离子膜电解槽是指在一个单元槽上,既有阳极又有阴极(每台离子膜电解槽的最端头的端单元槽除外),是阴阳极一体的单元槽。

94.不同类型离子膜电解槽的供电方式

离子膜电解槽的供电方式有两种∶并联和串联。在一台单极式离子膜电解槽内部(参见图23),直流供电电路是并联的,因此总电流即为通过各个单元槽的电流之和,各单元槽的电压基本相等,所以单极式离子膜电解槽的特点是低电压大电流。

2

复极式离子膜电解槽(参见图24)则正好相反,每个单元槽的电路是串联的,电流依次通过各个单元槽,故各单元槽的电流相等,但总电压为各单元槽槽电压之和,所以,复极式离子膜电解槽的特点是低电流、高电压。

95.离子膜电解槽通常的腐蚀形式

离子膜电解装置(主要指单元槽,阴、阳极液进、出口总管等)通常存在三种腐蚀,即∶①化学腐蚀;②间隙腐蚀;③泄漏电流腐蚀。

96.如何防止离子膜电解槽的化学腐蚀

化学腐蚀主要是阴阳极系统不同的化学介质对材料的腐蚀。在阴极系统中,主要是90℃的32%(质量分数)NaOH对材料的腐蚀,在阴极系统,各公司选用的材料大致有三种∶镍(Ni)、不锈钢(SUS310S或00Cr25Ni20)和非金属材料(CPVC、PVC+FRP、PTFE、PFA等)。但在既要耐NaOH腐蚀又要导电的部位(如阴极盘、阴极筋板、阴极网等),最好还是使用镍(Ni)材料,因为Ni既有良好的耐碱腐蚀性又是电阻较低的材料。在输送NaOH液体的部位,可采用SUS310S、非金属材料或钢衬里材料(如总管、包括阴极液进出口总管)。

在阳极系统中,世界各公司都无一例外地选用了耐腐蚀性能最好的金属材料——钛(Ti),当然在阳极液输送管等部位也有选用CPVC+FRP增强树脂等非金属材料。

在离子膜电解装置中,Ti材料在通常使用情况下,其电位接近钝化区,通过溶液中的Cl2溶解后生成的次氯酸或次氯酸离子的氧化作用,(生成TiO2)来维持钝态。

Cl2 + H2O ←→ HCl + HClO

3