人教版高中数学选修1-1教案:2.4.1 抛物线及其标准方程 下载本文

内容发布更新时间 : 2024/11/5 13:03:42星期一 下面是文章的全部内容请认真阅读。

长丰县实验高中2016~2017学年第一学期高二年级数学(文科)

集 体 备 课 教 案

项目 内容 2.4.1 抛物线及其标准方程 课题 (共 1 课时) 知识与技能:使学生掌握抛物线的定义,理解焦点、准线方程的几何意义,能够根据已知条件写出抛物线的标准方程。 过程与方法:掌握开口向右的抛物线的标准方程的推导过程,进一步理教学 解求曲线的方法——坐标法;通过本节课的学习,学生在解决问题时应具有目标 观察、类比、分析和计算的能力。 情感、态度与价值观:通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育. 教学修改与创新 重点:抛物线的定义和标准方程. 重、 难点:抛物线的标准方程的推导. 难点 教学 多媒体课件 准备 (一)导出课题 我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”. 请大家思考两个问题: 教学过问题1:同学们对抛物线已有了哪些认识? 程 在物理中,抛物线被认为是抛射物体的运行轨道;在数学中,抛物线是二次 函数的图象? 问题2:在二次函数中研究的抛物线有什么特征? 在二次函数中研究的抛物线,它的对称轴是平行于y轴、开口向上或开口向下两种情形. 引导学生进一步思考:如果抛物线的对称轴不平行于y轴,那么就不能作为

1

二次函数的图象来研究了.今天,我们突破函数研究中这个限制,从更一般意义上来研究抛物线. (二)抛物线的定义 1.回顾 平面内与一个定点F的距离和一条定直线l的距离的比是常数e的轨迹,当0<e<1时是椭圆,当e>1时是双曲线,那么当e=1时,它又是什么曲线? 2.简单实验 如图2-29,把一根直尺固定在画图板内直线l的位置上,一块三角板的一条直角边紧靠直尺的边缘;把一条绳子的一端固定于三角板另一条直角边上的点A,截取绳子的长等于A到直线l的距离AC,并且把绳子另一端固定在图板上的一点F;用一支铅笔扣着绳子,紧靠着三角板的这条直角边把绳子绷紧,然后使三角板紧靠着直尺左右滑动,这样铅笔就描出一条曲线,这条曲线叫做抛物线.反复演示后,请同学们来归纳抛物线的定义,教师总结. 3.定义 这样,可以把抛物线的定义概括成: 平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上).定点F叫做抛物线的焦点,定直线l叫做抛物线的准线. (三)抛物线的标准方程 设定点F到定直线l的距离为p(p为已知数且大于0).下面,我们来求抛物线的方程.怎样选择直角坐标系,才能使所得的方程取较简单的形式呢? 让学生议论一下,教师巡视,启发辅导,最后简单小结建立直角坐标系的几种方案: 方案1:(由第一组同学完成,请一学生板练.) 以l为y轴,过点F与直线l垂直的直线为x轴建立直角坐标系(图2- 2

30).设定点F(p,0),动点M的坐标为(x,y),过M作MD⊥y轴于D,抛物线的集合为:p={M||MF|=|MD|}. 化简后得:y2=2px-p2(p>0). 方案2:(由第二组同学完成,请一学生板练) 以定点F为原点,平行l的直线为y轴建立直角坐标系(如图).设动点M的坐标为(x,y),且设直线l的方程为x=-p,定点F(0,0),过M作MD⊥l于D,抛物线的集合为: p={M||MF|=|MD|}. 化简得:y2=2px+p2(p>0). 方案3:(由第三、四组同学完成,请一学生板练.) 取过焦点F且垂直于准线l的直线为x轴,x轴与l交于K,以线段KF的垂直平分线为y轴,建立直角坐标系(如图. 3