软磁合金热处理工艺论文 下载本文

内容发布更新时间 : 2024/11/16 3:22:01星期一 下面是文章的全部内容请认真阅读。

软磁合金热处理工艺论文

13种热处理工艺比较

本试验对3种工艺处理后Fe-Co合金的磁性能实行了比较,具体见表1。3种热处理工艺的具体制度分

别为:真空热处理真空度优于10-2Pa,随炉升温,到温后保温2h,氩气淬火,冷却速度300℃/h。氢气保护热处理加热炉到温后将加热容器马弗罐入炉,零件到温后保温2h,罐体出炉空冷至200℃,全程高纯氢保护,氢气露点低于-40℃。氢气保护磁场热处理加热炉到温后将加热容器马弗罐入炉,零件到温后保温1.5h后施加环形磁场,保持0.5h后磁场停止,罐体出炉空冷至200℃,全程高纯氢保护,氢气露点低于-40℃。从表1能够看出,和真空气淬工艺相比,氢气保护处理能够明显提升材料的磁性能,施加磁场后效果更加显著。但随热处理温度的升高,磁场作用下降,840℃时磁场基本不起作用。图1比较了740℃温度下,Fe-Co合金经氢气保护热处理及氢气保护磁场热处理后的磁化曲线和磁化率曲线。可见,材料在磁化过程中,外磁场达到200A/m时,氢气保护磁场处理及氢气保护处理合金的磁感应强度分别为1.6T和1.4T;外磁场达到400A/m时,二者的磁感应强度分别为1.9T和1.7T,这表明磁场热处理使得合金在低磁场下就具有较高的磁感应强度。氢气保护处理主要是通过氢气在高温下和材料的C、S等杂质元素发生化学反应,生成气相化合物并排出炉外,从而达到净化合金的目的,随着温度的提升,原子扩散速度加快,净化作用得到提升;磁场处理主要通过干涉热处理过程中材料组织的变化,如形核、晶化、晶粒长大过程,使之在磁场方向上形成一定的织构。这种织构的形成机理,当前认为是在组织变化过程中原子扩散受磁场影响,在磁化方向上形成了能量最低状态,并在随后的冷却过程中保持下来,随着温度升高,原子扩散容易,磁性织构容易形成,对于磁性能的提升有益,但温度继续升高并接近居里温度,原子磁矩排列趋于紊乱,磁场作用反而下降。从以上结果能够看出,高强Fe-Co软磁合金热处理的试验结果符合这些原理,从应用需求角度出发,热处理温度的提升

会降低材料强度[8],为了确保材料强度达到1000MPa,一般热处理温度不宜超过760℃,所以磁场处理成为优化材料磁性能的首选工艺。 2磁场热处理

因为磁场热处理对高强Fe-Co合金性能影响显著,所以,对不同保温温度、充磁时间和磁场强度等参数实行了研究,结果见图2。从图2能够看出,热处理温度对磁性能的影响明显,随温度升高磁性能上升,这和常规热处理结果是相同的;保温时间对磁性能的影响相对较弱,随保温时间的延长磁性能上升,到2.0h后则基本不变,这和常规热处理结果基本一致;充磁磁场强度对磁性能的影响不强烈,随磁场增加,磁性能增加,150A之后变化不大,150A时产生的有效磁场为1330A/m。 3降温速率

因为Fe-Co软磁合金在730℃附近存有无序-有序化转变,导致性能恶化,所以1J21、1J22等Fe-Co合金热处理工艺中,必须操纵降温速率,通常是在730℃以上缓冷,730℃后快冷。如前所述,高强Fe-Co软磁合金的热处理温度区间一般低于760℃,处于敏感区间,降温制度对材料性能的影响至为关键。为此,利用真空气淬设备对降温速率可控技术,研究了不同降温速率对高强Fe-Co合金性能的影响,结果如表2所示。从表2可见,降温速率对材料的性能具有一定的影响,但总体变化不大。从数据对比来看,降温速率为150℃/h和600℃/h时,力学性能略低,但磁性能和其他样品差别不明显。前者能够认为是无序-有序转变的结果,后者则应该和过快冷却造成的内应力相关。为了评估Fe-Co合金添加元素对合金升、降温过程的影响,采纳DSC测量了750~1050℃的差热曲线,如图3所示。3种Fe-Co软磁合金中,1J21含V元素1.2wt%左右,1J22含V元素2.0wt%左右,而高强Fe-Co合金除含V元素2.0wt%外,还添加了Nb、Cr等其他元素。从图3能够看出,随着添加元素含量的增加,居里点(以极值点数值定义)呈下降趋势,但升和气降温过程表现不同,升温过程居里点相差不多,为964~972℃,降温过程居里点相差较大,为867~926℃,而且放热/吸热峰宽也随着增大。这说明添加元素的增加,合金的居里转变滞后水

准增加;降温过程的影响更加显著,表明添加元素起到的作用主要是对磁畴的钉扎。无序-有序化过程同样受添加元素的影响,从居里点的变化来推断,高强Fe-Co合金的无序-有序转变会受到更大抑制,这也是降温速率对性能影响不大的主要原因。从以上试验结果来看,300~600℃/h的降温速率都适用于高强Fe-Co合金热处理的冷却。

通过以上试验分析可知,高强Fe-Co合金作为一种元素增强型软磁材料,和真空、氢气保护热处理工艺相比,采纳磁场热处理技术能够获得较高的磁性能,并且对1000A/m以内的磁化率提升十分明显。热处理时施加的有效磁场强度达到1330A/m以上即可达到比较好的效果;在降温过程中,因为添加元素对组织结构转变的滞后作用,能够选用300~600℃/h的降温速率,冷速的变化对材料磁性能影响不大。 软磁合金热处理工艺论文