基于单片机的电热水器毕业设计 下载本文

内容发布更新时间 : 2024/7/4 13:17:46星期一 下面是文章的全部内容请认真阅读。

时/计数器,用于实现定时或计数功能;中断系统为一个6向量两级中断结构;一个可编程全双工串行通信口;片内振荡器及时钟电路,全静态工作方式。具有全静态工作方式表明它不一定要求连续的时钟定时,在等待内部事件期间,时钟频率可降至0Hz的静态逻辑操作[1]。 AT89C52的功能引脚说明:P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口;P1、P2、P3是一个带内部上拉电阻的8位双向I/O口,其输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路,而P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能;RST是复位输入;ALE/PROG是一个复用引脚,ALE是地址锁存允许,PROG是输入编程脉冲;PSEN是外部程序存储器的读选通信号;EA/VPP是外部访问允许;XTAL1是振荡器反相放大器的及内部时钟发生器的输入端;XTAL1是振荡器反相放大器的输出端。 2.3.2 数字温度传感器DS18B20介绍 DS18B20的主要特性:

1、适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电 。 2、独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯 。

3、DS18B20由多个DS18B20可以并联在唯一的三线上,实现组网多点测温。 4、DS18B20在使用中不需要任何外围元件,全部 传感元件及转换电路集成在形如一只三极管的集成电路内。

5、温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃ 。

6、可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温。

7、在9位分辨率时最多在 93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快。

8、测量结果直接输出数字温度信号,以”一 线总线”串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力。

9、负压特性:电源极性接反时,芯片不会因发热而烧毁, 但不能正常工作。

word文档 可自由复制编辑

DS18B20工作原理 :

DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s 减为750ms。如图2.2,图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振 随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对 低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重 新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即 为所测温度。斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。

累加器

预 置 比较器 增加 温度寄存器 低温度系数振荡器 计数器1 高温度系数振荡器 计数器1=0 停止 2 计数器 计数器 2=0 图2.2 DS18B20测温原理框图

DS18B20的应用电路 :

DS18B20测温系统具有测温系统简单、测温精度高、连接方便、占用口线少等优点。下面就是DS18B20几个不同应用方式下的 测温电路图:

DS18B20寄生电源供电方式电路图 如下面所示,在寄生电源供电方式下,DS18B20从单线信号线上汲取能量:在信号线DQ处于高电平期间把能量储存在内部 电容里,在信号线处于低电平期间消耗电容上的电能工作,直到高电平到来再给寄生电源(电容)

充电。

独特的寄生电源方式有三个好处:(1)进行远距离测温时,无需本地电源;(2)可以在没有常规电源的条件下读取ROM ;(3)电路更加简洁,仅用一根I/O口实现测温。

1、要想使DS18B20进行精确的温度转换,I/O线必须保证在温度转换期间提供足够的能量,由 于每个DS18B20在温度转换期间工作电流达到1mA,当几个温度传感器挂在同一根I/O线上进行多点测温时,只靠4.7K上拉电阻就无法提供足够的 能量,会造成无法转换温度或温度误差极大。

因此,图2.3电路只适应于单一温度传感器测温情况下使用,不适宜采用电池供电系统中。并 且工作电源VCC必须保证在5V,当电源电压下降时,寄生电源能够汲取的能量也降低,会使温度误差变大。

图2.3 寄生电源供电方式

2、DS18B20寄生电源强上拉供电方式电路图 改进的寄生电源供电方式如下面图5所示,为了使DS18B20在动态转换周期中获得足够的电流供应,当进行温度转换或拷贝到 E2存储器操作时,用MOSFET把I/O线直接拉到VCC就可提供足够的电流,在发出任何涉及到拷贝到E2存储器或启动温度转换的指令后,必须在最 多10μS内把I/O线转换到强上拉状态。在强上拉方式下可以解决电流供应不走的问题,因此也适合于多点测温应用,缺 点就是要多占用一根I/O口线进行强上拉切换。

3、DS18B20的外部电源供电方式 在外部电源供电方式下,工作电源由VDD引脚接入,此时I/O线不需要强上拉,不存在电源电流不足的问题,可以保证 转换精度,同时在总线上理论可以挂接任意多个DS18B20传感器,组成多点测温系统。注意:在外部供电的方式下,DS18B20的GND引脚不能悬空 ,否则不能转换温度,读取的温度总是85℃。

外部电源供电方式是DS18B20最佳的工作方式,工作稳定可靠,抗干扰能力强,

word文档 可自由复制编辑

而且电路也比较简单,可以开发出稳定可靠的多点温度 监控系统。站长推荐大家在开发中使用外部电源供电方式,毕竟比寄生电源方式只多接一根VCC引线。在外接电源方式下, 可以充分发挥DS18B20宽电源电压范围的优点,即使电源电压VCC降到3V时,依然能够保证温度量精度。 2.3.3 LED数码管显示

在单片机应用系统中,如果需要显示的内容只有数码和某些字母,使用LED数码管是一种较好的选择。LED数码管显示清晰、成本低廉、配置灵活,与单片机接口简单易行。

LED数码管是由发光二极管作为显示字段的数码型显示器件。图2.4为0.5inLED数码管的外形和引脚图,其中七只发光二极管分别对应a~g笔段构成“”字形另一只发光二极管Dp作为小数点。因此这种LED显示器称为七段数码管或八段数码管。

图2.4 LED数码管

LED数码管按电路中的连接方式可以分为共阴型和共阳型两大类,如图2.4示b、c所示。共阳型是将各段发光二极管的正极连在一起,作为公共端COM,公共端COM接高电平,a~g、Dp各笔段通过限流电阻接控制端。某笔段控制端低电平时,该笔段发光,高电平时不发光。控制这几段笔段发光,就能显示出某个数码或字符。共阴型是将各数码发光二极管的负极连在一起,作为公共端COM接地,某笔段通过限流电阻接高电平时发光。

LED数码管按其外形尺寸有多种形式,使用较多的是0.5in和0.8in;按显示颜色也有多种形式,主要有红色和绿色;按亮度强弱可分为高亮和普亮,指通过同样的电流显示亮度不一样,这是因发光二极管的材料不一样而引起的。

LED数码管的使用与发光二极管相同,根据其材料不同正向压降一般为1.5~2V额定电流为10mA,最大电流为40mA。静态显示时取10mA为宜,动态扫描显示可加大,加大脉冲电流,但一般不超过40mA。

LED数码管显示电路在单片机应用系统中可分为静态显示方式和动态显示方式。 1.静态显示方式

在静态显示方式下,每一位显示器的字段需要一个8位I/O口控制,而且该I/O口须有锁存功能,N位显示器就需要N个8位I/O口,公共端可直接接+5V(共阳)或接地(共阴)。显示时,每一位字段码分别从I/O控制口输出,保持不变直至CPU刷新显示为止。也就是各字段的亮灭状态不变。静态显示方式编程较简单,但占用I/O口线多,即软件简单、硬件成本高,一般适用显示位数较少的场合。

2.动态扫描显示方式

当要求显示位数较多时,为简化电路、降低硬件成本,常采用动态扫描显示电路。所谓动态扫描显示电路是将显示各位的所有相同字段线连在一起,每一位的a段连在一起,b段连在一起?g段连在一起,共8段,由一个8位I/O口控制,而每一位的公共端(共阳或共阴COM)由另一个I/O口控制,由于将多位字段线连在一起,当输出字段码时,由于多门同时选通,每一位将显示相同的内容。因此要显示不同的内容,必须采取轮流显示的方式。即在某一瞬间时,只让某一位的字位线处于选通状态(共阴极LED数码管为低电平,共阳极为高电平),其他各位的字位线处于开断状态,同时字段线上输出这一位相应要显示字符的字段码。在这一瞬时,只有这一位在显示,其他几位暗。同样在下一瞬时,单独显示下一位,这样依次轮流显示,循环扫描。由于人的视觉滞留效应,人们看到的是多位同时稳定显示。

表2.5共阳极LED数码管显示数字“0”时各管段编码

D7 Dp 1 D6 g 1 D5 f 0 D4 e 0 D3 d 0 D2 c 0 D1 b 0 D0 a 0 字段码 C0H 显示数 0 C0H称为共阳极LED数码管显示“0”的字段码,不计小数点的字段码称为七段码,包括小数点的字段称为八段码。

当LED数码管与单片机相连时,一般将LED数码管的各笔段引脚a、b、?、g、Dp

word文档 可自由复制编辑