内容发布更新时间 : 2024/12/24 20:35:23星期一 下面是文章的全部内容请认真阅读。
“他山之石可以攻玉”
【编者的话】
新课改后的中考数学压轴题已从传统的考察知识点多、难度大、复杂程度高的综合题型,逐步转向数形结合、动态几何、动手操作、实验探究等方向发展。这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等。从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等。但纵观全国各省、市的中考数学试题,它的压轴题均是借鉴于上年各地的中考试题演变而来。所以,研究上年各地的中考试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向。只的这样,学生能力得以的培养,解题方法、技巧得以掌握,学生才能顺利地解答未来中考的压轴题。
2008年全国各地中考试题压轴题精选讲座一
几何与函数问题
【知识纵横】
客观世界中事物总是相互关联、相互制约的。几何与函数问题就是从量和形的侧面去描述客观世界的运动变化、相互联系和相互制约性。函数与几何的综合题,对考查学生的双基和探索能力有一定的代表性,通过几何图形的两个变量之间的关系建立函数关系式,进一步研究几何的性质,沟通函数与几何的有机联系,可以培养学生的数形结合的思想方法。
【典型例题】
【例1】(上海市)已知AB?2,AD?4,?DAB?90,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.
(1)设BE?x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域; (2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;
(3)联结BD,交线段AM于点N,如果以A,N,D为顶点的三角形与△BME相似,求 线段BE的长.
B A
D M E
C
B
C
A
D
备用图
【思路点拨】(1)取AB中点H,联结MH;(2)先求出 DE; (3)分二种情况讨论。
【例2】(山东青岛)已知:如图(1),在Rt△ACB中,?C?90,AC?4cm,BC?3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0?t?2),解答下列问题: (1)当t为何值时,PQ∥BC?
(2)设△AQP的面积为y(cm),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;
(4)如图(2),连接PC,并把△PQC沿QC翻折,得到四边形PQP?C,那么是否存在某一时刻t,使四边形PQP?C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
A
Q C A
Q C B P P B 2 图(1) 图(2) P?
【思路点拨】(1)设BP为t,则AQ = 2t,证△APQ ∽△ABC;(2)过点P作PH⊥AC于H. (3)构建方程模型,求t;(4)过点P作PM⊥AC于M,PN⊥BC于N,若四边形PQP ′ C是菱形,那么构建方程模型后,能找到对应t的值。
【例3】(山东德州)如图(1),在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,
B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.
(1)用含x的代数式表示△MNP的面积S; (2)当x为何值时,⊙O与直线BC相切?
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?
M O P B
C B
D
C N M O N B P
C A A M O N A
图(1) 图(2) 图(3)
【思路点拨】(1)证△AMN ∽ △ABC;(2)设直线BC与⊙O相切于点D,连结AO,OD,先求出OD(用x的代数式表示),再过M点作MQ⊥BC 于Q,证△BMQ∽△BCA;(3)先找到图形娈化的分界点,x=2。然后 分两种情况讨论求y的最大值: ① 当0<x≤2时, ② 当2<x<4时。
【学力训练】
1、(山东威海) 如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.
(1)求梯形ABCD的面积; (2)求四边形MEFN面积的最大值.
(3)试判断四边形MEFN能否为正方形,若能, 求出正方形MEFN的面积;若不能,请说明理由.
A
E
F
B
M D C N
2、(浙江温州市)如图,在Rt△ABC中,?A?90,AB?6,AC?8,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点P作PQ?BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动.设BQ?x,QR?y. (1)求点D到BC的距离DH的长;
(2)求y关于x的函数关系式(不要求写出自变量的取值范围); (3)是否存在点P,使△PQR为等腰三角形?若存在, 请求出所有满足要求的x的值;若不存在,请说明理由.
3、(湖南郴州)如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为 BC边上的一个动点(不与B、C重合).过E作直线AB的垂线,垂足为F. FE与DC的延长线相交于点G,连结DE,DF.. (1) 求证:ΔBEF ∽ΔCEG. (2) 当点E在线段BC上运动时,△BEF和 △CEG的周长之间有什么关系?并说明你的理由. (3)设BE=x,△DEF的面积为 y,请你求
BMA D P H Q
R E C
B AFDxEG
C