基于单片机的楼道内声控灯及报警系统 下载本文

内容发布更新时间 : 2024/11/18 15:36:28星期一 下面是文章的全部内容请认真阅读。

东北石油大学本科生毕业设计(论文)

图3-1 STC89C52管脚图

(1)主电源引脚(2根) VCC(Pin40):电源输入,接+5V电源 GND(Pin20):接地线 (2)外接晶振引脚(2根)

XTAL0(Pin18):片内振荡电路的输入端 XTAL1(Pin19):片内振荡电路的输出端 (3)控制引脚(4根)

RST/VPP(Pin9):复位引脚,引脚上出现2个机器周期的高电平将使单片机复位。 ALE/PROG(Pin30):地址锁存允许信号 PSEN(Pin29):外部存储器读选通信号

EA/VPP(Pin31):程序存储器的内外部选通,接低电平从外部程序存储器读指令,如果接高电平则从内部程序存储器读指令。 (4)可编程输入/输出引脚(32根)

STC89C52单片机有4组8位的可编程I/O口,分别位P0、P1、P2、P3口,每个口有8位(8根引脚),共32根。

P0口(Pin39~Pin32):名称为P0.0~P0.7。P0口是一个8位漏极开路的双向I/O口。作为输出口,每位能驱动8个TTL逻辑电平(晶体管-晶体管逻辑电平)。

P1口(Pin1~Pin8):名称为P1.0~P1.7。P1 口是一个具有内部上拉电阻的8 位双向I/O 口,p1 输出缓冲器能驱动4 个 TTL 逻辑电平。对P1 端口写“1”时,内部上拉电

6

东北石油大学本科生毕业设计(论文)

阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。此外,P1.0和P1.2分别作定时器/计数器2的外部计数输入(P1.0/T2)和时器/计数器2 的触发输入(P1.1/T2EX),具体如下所示。 在flash编程和校验时,P1口接收低8位地址字节。 P1引脚第二功能:

P1.0 :T2(定时器/计数器T2的外部计数输入),时钟输出 P1.1 :T2EX(定时器/计数器T2的捕捉/重载触发信号和方向控制) P1.5: MOSI(在线系统编程时用到) P1.6 :MISO(在线系统编程时用到) P1.7 :SCK(在线系统编程时用到)

P2口(Pin21~Pin28):名称为P2.0~P2.7。P2 口是一个具有内部上拉电阻的8 位双向I/O 口,P2 输出缓冲器能驱动4个TTL 逻辑电平。对P2 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。在访问外部程序存储器或用16位地址读取外部数据存储器(例如执行MOVX @DPTR)时,P2 口送出高八位地址。在这种应用中,P2 口使用很强的内部上拉发送1。在使用 8位地址(如MOVX @RI)访问外部数据存储器时,P2口输出P2锁存器的内容。在flash编程和校验时,P2口也接收高8位地址字节和一些控制信号。

P3口(Pin10~Pin17):8位准双向I/O口线,名称为P3.0~P3.7。P3 口是一个具有内部上拉电阻的8 位双向I/O 口,p2 输出缓冲器能驱动4 个 TTL 逻辑电平。对P3 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。 P3口亦作为STC89C52特殊功能(第二功能)使用,如下表所示。在flash编程和校验时,P3口也接收一些控制信号。 端口引脚第二功能: P3.0 RXD(串行输入口) P3.1 TXD(串行输出口) P3.2 INTO(外中断0) P3.3 INT1(外中断1) P3.4 TO(定时/计数器0) P3.5 T1(定时/计数器1)

P3.6 WR(外部数据存储器写选通) P3.7 RD(外部数据存储器读选通)

此外,P3口还接收一些用于FLASH闪存编程和程序校验的控制信号。

RST——复位输入。当振荡器工作时,RST引脚出现两个机器周期以上高电平将是单片机复位。

ALE/PROG——当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。一般情况下,ALE仍以时钟振荡频率的1/6输出固定的

7

东北石油大学本科生毕业设计(论文)

脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问外部数据存储器时将跳过一个ALE脉冲。

对FLASH存储器编程期间,该引脚还用于输入编程脉冲(PROG)。如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。该位置位后,只有一条MOVX和MOVC指令才能将ALE激活。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE禁止位无效。

PSEN——程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当STC89C52由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN有效,即输出两个脉冲,在此期间,当访问外部数据存储器,将跳过两次PSEN信号。

EA/VPP——外部访问允许,欲使CPU仅访问外部程序存储器(地址为0000H-FFFFH),EA端必须保持低电平(接地)。需注意的是:如果加密位LB1被编程,复位时内部会锁存EA端状态。如EA端为高电平(接Vcc端),CPU则执行内部程序存储器的指令。

FLASH存储器编程时,该引脚加上+12V的编程允许电源Vpp,当然这必须是该器件是使用12V编程电压Vpp。

[3]

3.1.2 驻极体传声器

1.咪头的定义:

咪头又名麦克风,话筒,传声器,咪胆等。咪头是一个声-电转换器件(也可以称为换能器或传感器),是和喇叭正好相反的一个器件(电→声)。是声音设备的两个终端,咪头是输入,喇叭是输出。ECM(Electret Condenser Microphone)驻极体电容式麦克风的简称。 2.咪头的分类:

从工作原理上分:炭精粒式,电磁式,电容式,驻极体电容式(以下介绍以驻极体式为主),压电晶体式,压电陶瓷式,二氧化硅式等。

从尺寸大小分,驻极体式又可分为若干种。Φ9.7系列产品 、Φ8系列产品 、Φ6系列产品 、Φ4.5系列产品、 Φ4系列产品 、Φ3系列产品每个系列中又有不同的高度。

从咪头的方向性,可分为全向(无向),单向,双向(又称为消噪式)。 从极化方式上分为振膜式,背极式,前极式。

从结构上分又可以分为栅极点焊式,栅极压接式,极环连接式等。

从对外连接方式分为普通焊点式L型,带PIN脚式P型,同心圆式S/A型。 3.驻极体传声器的结构

以全向MIC振膜式极环连接式为例。如图3-2所示:

金 属 层PE驻 极 体 薄 膜空 气 间 隙R铜 板

图3-2 MIC振膜式驻极体传声器结构图

8

东北石油大学本科生毕业设计(论文)

防尘网:保护咪头,防止灰尘落到振膜上,防止外部物体刺破振膜,还有短时间的防水作用。

外壳:整个咪头的支撑件,其它件封装在外壳之中,是传声器的接地点,还可以起到电磁屏蔽的作用。振膜是一个声-电转换的主要零件,是一个绷紧的特氟珑塑料薄膜(聚氯乙烯)粘在一个金属薄圆环上,薄膜与金属环接触的一面镀有一层很薄的金属层,薄膜可以充有电荷,也是组成一个可变电容的一个电极板,而且是可以振动的极板。

杜邦膜:FEP、PTFE、PFA、PET等,FEP是美国杜邦公司生产的一种特氟珑薄膜叫聚全氯乙丙烯,在驻极体传声器方面,主要用于电荷的存贮,因为内部有很多的势阱。

PPS膜:是一种不能存贮电荷的薄膜叫聚苯硫醚,在驻极体传声器方面,主要用于背极式和前极式的振动膜片。

垫片:支撑电容两极板之间的距离,留有间隙,为振膜振动提供一个空间,从而改变电容量。

背极板:电容的另一个电极,并且连接到了FET(场效应管)的G(栅)极上。 铜环:连接极板与FET(场效应管)的G(栅)极,并且起到支撑作用。

腔体:固定极板和极环,从而防止极板和极环对外壳短路(FET(场效应管)的S(源极),G(栅)极短路)。

PCB组件:装有FET,电容等器件,同时也起到固定其它件的作用。

PIN:有的传声器在PCB上带有PIN(脚),可以通过PIN与其他PCB焊接在一起,起连接另外前极式,背极式在结构上也略有不同。 4.驻极体咪头的工作原理:

由静电学可知,对于平行板电容器,有如下的关系式:C=ε.S/L ……①即电容的容量与介质的介电常数成正比,与两个极板的面积成正比,与两个极板之间的距离成反比。另外,当一个电容器充有Q量的电荷,那么电容器两个极板要形成一定的电压,有如下关系式:C=Q/V ……②

对于一个驻极体咪头,内部存在一个由振膜,垫片和极板组成的电容器,因为膜片上充有电荷,并且是一个塑料膜,因此当膜片受到声压强的作用,膜片要产生振动,从而改变了膜片与极板之间的距离,从而改变了电容器两个极板之间的距离,产生了一个Δd的变化,因此由公式①可知,必然要产生一个ΔC的变化,由公式②又知,由于ΔC的变化,充电电荷又是固定不变的,因此必然产生一个ΔV的变化。这样初步完成了一个由声信号到电信号的转换。

由于这个信号非常微弱,内阻非常高,不能直接使用,因此还要进行阻抗变换和放大。FET场效应管是一个电压控制元件,漏极的输出电流受源极与栅极电压的控制。由于电容器的两个极是接到FET的S极和G极的,因此相当于FET的S极与G极之间加了一个Δv的变化量,FET的漏极电流I就产生一个ΔID的变化量,因此这个电流的变化量就在电阻RL上产生一个ΔVD的变化量,这个电压的变化量就可以通过电容C0输出,这个电压的变化量是由声压引起的,因此整个咪头就完成了一个声电的转换过程。

[4]

9