第九章 多元函数微分法及其应用 下载本文

内容发布更新时间 : 2024/12/23 18:11:05星期一 下面是文章的全部内容请认真阅读。

第九章 多元函数微分法及其应用

§8? 1 多元函数的基本概念

一、平面点集n维空间

1.平面点集

二元的序实数组(x? y)的全体? 即R2?R?R?{(x? y)|x? y?R}就表示坐标平面? 坐标平面上具有某种性质P的点的集合? 称为平面点集? 记作 E?{(x? y)| (x? y)具有性质P}?

例如? 平面上以原点为中心、r为半径的圆内所有点的集合是 C?{(x? y)| x2?y2?r2}?

如果我们以点P表示(x? y)? 以|OP|表示点P到原点O的距离? 那么集合C可表成 C?{P| |OP|?r}?

邻域?

设P0(x0? y0)是xOy平面上的一个点? ?是某一正数? 与点P0(x0? y0)距离小于?的点P (x? y)的全体? 称为点P0的?邻域? 记为U (P0? ??? 即

22U(P,?)?{(x, y)| (x?x)?(y?y)?? }? U(P,?)?{P| |PP|??}00000 或

邻域的几何意义? U (P0? ?)表示xOy平面上以点P0(x0? y0)为中心、? >0为半径的圆的内

部的点P (x? y)的全体? ?

0, ?)? 即 点P0的去心?邻域? 记作U(P0, ?)?{P| 0?|P0P|??}? U(P 注? 如果不需要强调邻域的半径?? 则用U (P0)表示点P0的某个邻域? 点P0的去心邻域0)? 记作U(P 点与点集之间的关系?

任意一点P?R2与任意一个点集E?R2之间必有以下三种关系中的一种? (1)内点? 如果存在点P的某一邻域U(P)? 使得U(P)?E? 则称P为E的内点? (2)外点? 如果存在点P的某个邻域U(P)? 使得U(P)?E??? 则称P为E的外点?

(3)边界点? 如果点P的任一邻域内既有属于E的点? 也有不属于E的点? 则称P点为E的边点?

E的边界点的全体? 称为E的边界? 记作?E?

E的内点必属于E? E的外点必定不属于E? 而E的边界点可能属于E? 也可能不属于E ? 聚点?

??? 如果对于任意给定的??0? 点P的去心邻域U(P,?)内总有E中的点? 则称P是E的聚点?

由聚点的定义可知? 点集E的聚点P本身? 可以属于E? 也可能不属于E ? 例如? 设平面点集

E?{(x? y)|1?x2?y2?2}?

满足1?x2?y2?2的一切点(x? y)都是E的内点? 满足x2?y2?1的一切点(x? y)都是E的边界点? 它们都不属于E? 满足x2?y2?2的一切点(x? y)也是E的边界点? 它们都属于E? 点集E以及它的界边?E上的一切点都是E的聚点?

开集? 如果点集E 的点都是内点? 则称E为开集? 闭集? 如果点集的余集E c为开集? 则称E为闭集? 开集的例子? E?{(x? y)|1

? 集合{(x? y)|1?x2?y2?2}既非开集? 也非闭集?

连通性? 如果点集E内任何两点? 都可用折线连结起来? 且该折线上的点都属于E? 则称E为连通集?

区域(或开区域)? 连通的开集称为区域或开区域? 例如E?{(x? y)|1?x2?y2?2}?

闭区域? 开区域连同它的边界一起所构成的点集称为闭区域? 例如E ? {(x? y)|1?x2?y2?2}?

有界集? 对于平面点集E? 如果存在某一正数r? 使得 E?U(O? r)?

其中O是坐标原点? 则称E为有界点集?

无界集? 一个集合如果不是有界集? 就称这集合为无界集?

例如? 集合{(x? y)|1?x2?y2?2}是有界闭区域? 集合{(x? y)| x?y?1}是无界开区域? 集合{(x? y)| x?y?1}是无界闭区域? 2? n维空间

设n为取定的一个自然数? 我们用Rn表示n元有序数组(x1? x2? ? ? ? ? xn)的全体所构成的集合? 即

Rn?R?R???????R?{(x1? x2? ? ? ? ? xn)| xi?R? i?1? 2? ?????? n}?

Rn中的元素(x1? x2? ? ? ? ? xn)有时也用单个字母x来表示? 即x?(x1? x2? ? ? ? ? xn)? 当所有的xi (i?1? 2? ?????? n)都为零时? 称这样的元素为Rn中的零元? 记为0或O ? 在解析几何中? 通过直角坐标? R2(或R3)中的元素分别与平面(或空间)中的点或向量建立一一对应? 因而Rn中的元素x?(x1? x2? ? ? ? ? xn)也称为Rn中的一个点或一个n维向量? xi称为点x的第i个坐标或n维向量x的第i个分量? 特别地? Rn中的零元0称为Rn中的坐标原点或n维零向量? 为了在集合Rn中的元素之间建立联系? 在Rn中定义线性运算如下? 设x?(x1? x2? ? ? ? ? xn)? y?(y1? y2? ? ? ? ? yn)为Rn中任意两个元素? ??R? 规定 x?y?(x1? y1? x2? y2? ? ? ? ? xn? yn)? ?x?(?x1? ?x2? ? ? ? ? ?xn)? 这样定义了线性运算的集合Rn称为n维空间?

Rn中点x?(x1? x2? ? ? ? ? xn)和点 y?(y1? y2? ? ? ? ? yn)间的距离? 记作?(x? y)? 规定

?(x,y)?(x1?y1)?(x2?y2)? ? ? ? ?(xn?yn)?

显然? n?1? 2? 3时? 上术规定与数轴上、直角坐标系下平面及空间中两点间的距离一至? Rn中元素x?(x1? x2? ? ? ? ? xn)与零元0之间的距离?(x? 0)记作||x||(在R1、R2、R3中? 通常将||x||记作|x|)? 即

222 ||x||?x1?x2? ? ? ? xn?

采用这一记号? 结合向量的线性运算? 便得

222222||x?y||?(x?y)?(x?y)? ? ? ? ?(x?y)??(x,y)? 1122nn

在n维空间Rn中定义了距离以后? 就可以定义Rn中变元的极限?

设x?(x1? x2? ? ? ? ? xn)? a?(a1? a2? ? ? ? ? an)?Rn? 如果

||x?a||?0?

则称变元x在Rn中趋于固定元a? 记作x?a ? 显然?

x?a ? x1?a1? x2?a2? ? ? ? ? xn?an ?

在Rn中线性运算和距离的引入? 使得前面讨论过的有关平面点集的一系列概念? 可以方便地引入到n(n?3)维空间中来? 例如?

设a?(a1? a2? ? ? ? ? an)?Rn? ?是某一正数? 则n维空间内的点集 U(a? ?)?{x| x? Rn? ?(x? a)??}

就定义为Rn中点a的?邻域? 以邻域为基础? 可以定义点集的内点、外点、边界点和聚点? 以及开集、闭集、区域等一系列概念? 二? 多元函数概念

例1 圆柱体的体积V 和它的底半径r、高h之间具有关系

V ??r2h??

这里? 当r、h在集合{(r ? h) | r>0? h>0}内取定一对值(r ? h)时? V对应的值就随之确定?? 例2 一定量的理想气体的压强p、体积V和绝对温度T之间具有关系

p?RTV??

其中R为常数? 这里? 当V、T在集合{(V ?T) | V>0? T>0}内取定一对值(V? T)时? p的对应值就

随之确定?

例3 设R 是电阻R1、R2并联后的总电阻? 由电学知道? 它们之间具有关系

R?

这里? 当R1、R2在集合{( R1? R2) | R1>0? R2>0}内取定一对值( R1 ? R2)时? R的对应值就随之确定? ?

定义1 设D是R2的一个非空子集? 称映射f ? D?R为定义在D上的二元函数? 通常记为

z?f(x? y)? (x? y)?D (或z?f(P)? P?D)

其中点集D称为该函数的定义域? x? y称为自变量? z称为因变量?

上述定义中? 与自变量x、y的一对值(x? y)相对应的因变量z的值? 也称为f在点(x? y)处的函数值? 记作f(x? y)? 即z?f(x? y)? 值域? f(D)?{z| z?f(x? y)? (x? y)?D}?

函数的其它符号? z?z(x? y)? z?g(x? y)等?

类似地可定义三元函数u?f(x? y? z)? (x? y? z)?D以及三元以上的函数?

一般地? 把定义1中的平面点集D换成n维空间Rn内的点集D? 映射f ? D?R就称为定义在D上的n元函数? 通常记为

u?f(x1? x2? ? ? ? ? xn)? (x1? x2? ? ? ? ? xn)?D? 或简记为

u?f(x)? x?(x1? x2? ? ? ? ? xn)?D? 也可记为

u?f(P)? P(x1? x2? ? ? ? ? xn)?D ?

关于函数定义域的约定? 在一般地讨论用算式表达的多元函数u?f(x)时? 就以使这个算式有意义的变元x的值所组成的点集为这个多元函数的自然定义域? 因而? 对这类函数? 它的定义域不再特别标出? 例如?

函数z?ln(x?y)的定义域为{(x? y)|x?y>0}(无界开区域)?

函数z?arcsin(x2?y2)的定义域为{(x? y)|x2?y2?1}(有界闭区域)?

二元函数的图形? 点集{(x? y? z)|z?f(x? y)? (x? y)?D}称为二元函数z?f(x? y)的图形? 二元函数的图形是一张曲面?

例如 z?ax?by?c是一张平面? 而函数z=x2+y2的图形是旋转抛物面?

三? 多元函数的极限

与一元函数的极限概念类似? 如果在P(x? y)?P0(x0? y0)的过程中? 对应的函数值f(x? y)无限接近于一个确定的常数A? 则称A是函数f(x? y)当(x? y)?(x0? y0)时的极限? 定义2

设二元函数f(P)?f(x? y)的定义域为D? P0(x0? y0)是D的聚点? 如果存在常数A? 对于任意

0,?)时? 都有 给定的正数?总存在正数?? 使得当P(x,y)?D?U(P |f(P)?A|?|f(x? y)?A|??

成立? 则称常数A为函数f(x? y)当(x? y)?(x0? y0)时的极限? 记为

?R1R2R1?R2?

也记作

(x,y)?(x0,y0)limf(x,y)?A? 或f(x? y)?A ((x? y)?(x0? y0))?