ÄÚÈÝ·¢²¼¸üÐÂʱ¼ä : 2025/7/12 2:38:07ÐÇÆÚÒ» ÏÂÃæÊÇÎÄÕµÄÈ«²¿ÄÚÈÝÇëÈÏÕæÔĶÁ¡£
µÚ¾Å½Ú Ô²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
A×é »ù´¡Ìâ×é
1.Èçͼ,Å×ÎïÏßW:y=4xÓëÔ²C:(x-1)+y=25½»ÓÚA,BÁ½µã,µãPΪÁÓ»¡ABÉϲ»Í¬ÓÚA,BµÄÒ»¸ö¶¯µã,ÓëxÖáÆ½ÐеÄÖ±ÏßPQ½»Å×ÎïÏßWÓÚµãQ,Ôò¡÷PQCµÄÖܳ¤µÄȡֵ·¶Î§ÊÇ( )
2
2
2
A.(10,14) B.(12,14) C.(10,12) D.(9,11)
2.(2017ºþÄÏÏæÖÐÃûУÁª¿¼)ÒÑÖªÅ×ÎïÏßy=2px(p>0)µÄ½¹µãΪF,¡÷ABCµÄ¶¥µã¶¼ÔÚÅ×ÎïÏßÉÏ,ÇÒÂú×ã
2
++=0,Ôò++= .
3.ÒÑÖªÍÖÔ²+=1(a>0,b>0)¹ýµã(0,1),Æä³¤Ö᳤¡¢½¹¾àºÍ¶ÌÖ᳤µÄƽ·½ÒÀ´Î³ÉµÈ²îÊýÁÐ.Ö±ÏßlÓëxÖáÕý°ëÖáºÍyÖá·Ö±ð½»ÓÚµãQ¡¢P,ÓëÍÖÔ²·Ö±ð½»ÓÚµãM¡¢N,¸÷µã¾ù²»ÖغÏÇÒÂú×ã(1)ÇóÍÖÔ²µÄ±ê×¼·½³Ì;
(2)Èô¦Ë1+¦Ë2=-3,ÊÔÖ¤Ã÷:Ö±Ïßl¹ý¶¨µã,²¢Çó´Ë¶¨µã.
=¦Ë
,
=¦Ë
.
12
4.ÒÑÖªÍÖÔ²+=1(a>b>0)µÄ×ó¡¢ÓÒ½¹µã·Ö±ðÊÇF1¡¢F2,ÆäÀëÐÄÂÊe=,µãPΪÍÖÔ²ÉϵÄÒ»¸ö¶¯µã,¡÷PF1F2Ãæ»ýµÄ×î´óֵΪ4(1)ÇóÍÖÔ²µÄ·½³Ì;
(2)ÈôA,B,C,DÊÇÍÖÔ²Éϲ»ÖغϵÄËĸöµã,ACÓëBDÏཻÓÚµãF1,
¡¤
=0,Çó|
|+|
|µÄȡֵ·¶Î§.
.
1
B×é ÌáÉýÌâ×é
1.(2017ºþÄϳ¤É³Ä£Äâ)Èçͼ,PÊÇÖ±Ïßx=4ÉÏÒ»¶¯µã,ÒÔPΪԲÐĵÄÔ²¦£¹ý¶¨µãB(1,0),Ö±ÏßlÊÇÔ²¦£ÔÚµãB´¦µÄÇÐÏß,¹ýA(-1,0)×÷Ô²¦£µÄÁ½ÌõÇÐÏß·Ö±ðÓël½»ÓÚE,FÁ½µã. (1)ÇóÖ¤:|EA|+|EB|Ϊ¶¨Öµ;
(2)ÉèÖ±Ïßl½»Ö±Ïßx=4ÓÚµãQ,Ö¤Ã÷:|EB|¡¤|FQ|=|FB|¡¤|EQ|.
2.(2017ɽ¶«,21,14·Ö)ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖÐ,ÒÑÖªÍÖÔ²C:+=1(a>b>0)µÄÀëÐÄÂÊΪ,ÍÖÔ²C½ØÖ±Ïßy=1ËùµÃÏ߶εij¤¶ÈΪ2(1)ÇóÍÖÔ²CµÄ·½³Ì;
(2)¶¯Ö±Ïßl:y=kx+m(m¡Ù0)½»ÍÖÔ²CÓÚA,BÁ½µã,½»yÖáÓÚµãM.µãNÊÇM¹ØÓÚOµÄ¶Ô³Æµã,¨‘NµÄ°ë¾¶Îª|NO|.ÉèDΪABµÄÖеã,DE,DFÓ먑N·Ö±ðÏàÇÐÓÚµãE,F,Çó¡ÏEDFµÄ×îСֵ.
.
2
´ð°¸¾«½â¾«Îö A×é »ù´¡Ìâ×é
1.C ×÷³öÅ×ÎïÏßµÄ×¼Ïß:x=-1. ¹ýµãQÏò×¼ÏßÒý´¹Ïß,´¹×ãΪH.
¹Ê|QC|=|QH|.
¡ßPCΪԲµÄ°ë¾¶,¡à|PC|=5.
¡à¡÷PCQµÄÖܳ¤=|PQ|+|QC|+|PC|=|PQ|+|QH|+5. ÓÖ¡ßPQÓëxÖáÆ½ÐÐ, ¡à¡÷PCQµÄÖܳ¤=|PH|+5.
¡ßµãPΪÁÓ»¡ABÉϲ»Í¬ÓÚA,BµÄ¶¯µã,A(4,4),B(4,-4), ¡à5<|PH|<7,¡à10<|PH|+5<12. ¡à¡÷PCQµÄÖܳ¤µÄȡֵ·¶Î§Îª(10,12). 2.´ð°¸ 0
½âÎö ÉèA(x1,y1),B(x2,y2),C(x3,y3),F,ÓÉ++=0,µÃy1+y2+y3=0.Ò×µÃkAB==,ͬÀí
kAC=,kBC=,ËùÒÔ++=++=0.
2
2
2
3.½âÎö (1)ÉèÍÖÔ²µÄ½¹¾àΪ2c,ÓÉÌâÒâÖªb=1,ÇÒ(2a)+(2b)=2(2c), ÓÖa=b+c,ËùÒÔa=3.
2
2
2
2
ËùÒÔÍÖÔ²µÄ±ê×¼·½³ÌΪ+y=1.
(2)Ö¤Ã÷:ÓÉÌâÒâÉèP(0,m),Q(x0,0),M(x1,y1),N(x2,y2), Ö±ÏßlµÄ·½³ÌΪx=t(y-m), ÓÉ
=¦Ë
1
2
Öª(x1,y1-m)=¦Ë1(x0-x1,-y1),
¡ày1-m=-y1¦Ë1,ÓÉÌâÒâµÃy1¡Ù0,
¡à¦Ë1=-1.
3