内容发布更新时间 : 2025/1/23 9:39:50星期一 下面是文章的全部内容请认真阅读。
图3-1
第四章 理想气体的热力性质与过程
一.基本概念
理想气体: 比热容:
二.习题
21.热力学第一定律的数学表达式可写成q??u?w 或 q?cv?t?pdv 两者有何不同?
?1q=Δu+w 热力学第一定律的数学表达,普适的表达式
q=Cv*ΔT+∫pdv内能等于定容比热乘以温度变化,适用于理想气体;体积功等于压力对比容的积分,适用于准静态过程。所以该式适用于理想气体的准静态过程
2.图4-1所示,1-2和4-3各为定容过程,1-4和2-3各为定压过程,试判断q143与q123哪个大?
P 2 3 q123=(u3-u1)+w123 q143=(u3-u1)+w143 w123>w143
1 4 所以
v
图4-1
3.有两个任意过程1-2和1-3,点2和点3在同一条绝热线上,如图4-2所示。试问△u12与△u13谁大谁小?又如2和3在同一条等温线上呢? P 2->3为绝热膨胀过程,内能下降。所以
2 u2>u3。
绝热线
1 3
v 图4-2 4.讨论1 5.理想气体分子量M=16,k=1.3,若此气体稳定地流过一管道,进出管道时气体的温度分别为30℃和90℃,试求对每公斤气体所需的加热量(气体的动能和位能变化可以忽略)。 R=RM/M=8314/16 Cp-Cv=R 40 Cp/Cv=k q=Cp(T2-T1) 6.某理想气体在气缸内进行可逆绝热膨胀,当容积为二倍时,温度由40℃下降到-40℃,过程中气体做了60kJ/kg的功。若比热为定值,试求cp与cv的值。 q=Δu+w 0=Cv(-40-40)+60 p1*vk= p1*(2v)k p1*v=R(273+40) p2*2v=R(273-40) w=R*T1/(k-1)*(1-T2/T1) Cp=Cv+R 7.某理想气体初温T1=470K,质量为2.5kg,经可逆定容过程,其热力学能变化为?U=295.4kJ,求过程功、过程热量以及熵的变化。设该气体R=0.4kJ/(kg·K),k=1.35,并假定比热容为定值。 Cp-Cv=R Cp/Cv=k W=0, Q=?U, ?T=?U/(2.5kg*Cv), ?S= 8.在一具有可移动活塞的封闭气缸中,储有温度t1=45?C,表压力pg1=10kPa的氧气0.3m3。在定压下对氧气加热,加热量为40kJ;再经过多变过程膨胀到初温45?C,压力为18kPa。设环境大气压力为0.1MPa,氧气的比热容为定值,试求:(1)两过程的焓变量及所作的功;(2)多变膨胀过程中气体与外界交换的热量。 (1)过程1为定压过程,焓变于加热量40kJ;过程2的终了状态和过程1的初始状态比较,温度相同,理想气体的焓为温度的函数,所以过程2的焓变为-40kJ。 9.1kg空气,初态p1=1.0MPa, t1=500?C,在气缸中可逆定容放热到p2=0.5MPa,然后可逆绝热压缩到t3=500?C,再经可逆定温过程回到初态。求各过程的?u,?h,?s及w和q各为多少?并在p-v图和T-s图上画出这3个过程。 10.一封闭的气缸如图4-3所示,有一无摩擦的绝热活塞位于中间,两边分别充以氮气和氧气,初态均为p1=2MPa,t1=27?C。若气缸总容积为1000cm3,活塞体积忽略不计,缸壁是绝热的,仅在氧气一端面上可以交换热量。现向氧气加热使其压力升高到4MPa,试求所需热量及终态温度,并将过程表示在p-v图及T-s图上。绝热系数k=1.4 图4-3 V1=0.0005m3 4*106*VO2/TO2=2*106*0.0005/(273+27) 4*106*VN2/TN2=2*106*0.0005/(273+27) VO2+ VN2=0.001 2*106*0.0005k=4*106*VN2k 41 ?1=120kg/h;另一股的11.如图4-4所示,两股压力相同的空气流,一股的温度为t1=400℃,流量m?2=210kg/h;在与外界绝热的条件下,它们相互混合形成压力相同的空气流。温度为t2=150℃,流量m已知比热为定值,试计算混合气流的温度,并计算混合过程前后空气的熵的变化量是增加、减小或 不变?为什么? (400+273)*120+(150+273)*210=(120+210)*T T= 熵增过程 图4-4 ΔS=Q(1/423-1/673) 12.如图4-5所示,理想气体进行了一可逆循环1-2-3-1,已知1-3为定压过程,v3=2v1;2-3为定容过程,p2=2p3;1-2为直线线段,即p/v=常数。(1)试论证q1?2?q1?3?q3?2;(2)画出该循环的T-s图,并证明?s1?2??s1?3??s3?2;(3)若该理想气体的cp=1.013kJ/(kg·K),cv=0.724kJ/(kg·K),试求该循环的热效率。 (1)一个循环,内能不变,输出正功,总的吸热量为正; (3) T2=2*T3=4*T1 Q12=Cv(T2-T1)+(p1+p2)*(V3-V1)/2= Cv(T2-T1)+Cp(T3-T1)/2+Cp(T3-T1’) =Cv*3T1+Cp*T1/2+Cp*(2T1)/2 (T1’为压力p2以及容积v1在p-v图对应的温度) 图4-5 Q23=-Cv(T2-T3)=-Cv*2T1 Q31=-Cp(T3-T1)=-Cp*T1 W=Q12-Q23-Q3 效率=W/Q12 13.1kmol理想气体从初态p1=500kPa,T1=340K绝热膨胀到原来体积的2倍。设气体Mcp=33.44kJ/(kmol·K),Mcv=25.12kJ/(kmol·K)。试确定在下述情况下气体的终温,对外所做的功及熵的变化量。(1)可逆绝热过程;(2)气体向真空进行自由膨胀。 (1) k= p1*V*T1=p2*2v*T2 p1*Vk=p2*(2V)k T2= W=∫pdv= ds=0 42 (2) T2=T1 W=0 ds=设计可逆定温过程 43