ÄÚÈÝ·¢²¼¸üÐÂʱ¼ä : 2025/12/20 22:50:27ÐÇÆÚÒ» ÏÂÃæÊÇÎÄÕµÄÈ«²¿ÄÚÈÝÇëÈÏÕæÔĶÁ¡£
.
Äѵã8 ¹ØÓÚÆæÅ¼ÐÔÓëµ¥µ÷ÐÔ(¶þ)
º¯ÊýµÄµ¥µ÷ÐÔ¡¢ÆæÅ¼ÐÔÊǸ߿¼µÄÖØµãºÍÈȵãÄÚÈÝÖ®Ò»£¬ÌرðÊÇÁ½ÐÔÖʵÄÓ¦Óøü¼ÓÍ»³ö.±¾½ÚÖ÷Òª°ïÖú¿¼Éúѧ»áÔõÑùÀûÓÃÁ½ÐÔÖʽâÌâ£¬ÕÆÎÕ»ù±¾·½·¨£¬ÐγÉÓ¦ÓÃÒâʶ.
¡ñÄѵã´Å³¡
(¡ï¡ï¡ï¡ï¡ï)ÒÑ֪żº¯Êýf(x)ÔÚ(0£¬+¡Þ)ÉÏΪÔöº¯Êý£¬ÇÒf(2)=0,½â²»µÈʽ£Ûflog2(x2+5x+4)£Ý¡Ý0.
¡ñ°¸Àý̽¾¿ £ÛÀý1£ÝÒÑÖªÆæº¯Êýf(x)ÊǶ¨ÒåÔÚ(£3£¬3)Éϵļõº¯Êý£¬ÇÒÂú×ã²»µÈʽf(x£3)+f(x2£3)<0,Éè²»µÈʽ½â¼¯ÎªA£¬B=A¡È{x|1¡Üx¡Ü5},Çóº¯Êýg(x)=£3x2+3x£4(x¡ÊB)µÄ×î´óÖµ. ÃüÌâÒâͼ£º±¾ÌâÊôÓÚº¯ÊýÐÔÖʵÄ×ÛºÏÐÔÌâÄ¿£¬¿¼Éú±ØÐë¾ßÓÐ×ÛºÏÔËÓÃ֪ʶ·ÖÎöºÍ½â¾öÎÊÌâµÄÄÜÁ¦£¬Êô¡ï¡ï¡ï¡ï¼¶ÌâÄ¿.
֪ʶÒÀÍУºÖ÷ÒªÒÀ¾Ýº¯ÊýµÄÐÔÖÊÈ¥½â¾öÎÊÌâ.
´í½â·ÖÎö£ºÌâÄ¿²»µÈʽÖеġ°f¡±ºÅÈçºÎÈ¥µôÊÇÄѵ㣬ÔÚÇó¶þ´Îº¯ÊýÔÚ¸ø¶¨Çø¼äÉϵÄ×îÖµÎÊÌâʱ£¬Ñ§ÉúÈÝÒשµô¶¨ÒåÓò.
¼¼ÇÉÓë·½·¨£º½èÖúÆæÅ¼ÐÔÍÑÈ¥¡°f¡±ºÅ£¬×ª»¯Îªxcos²»µÈʽ£¬ÀûÓÃÊýÐνáºÏ½øÐм¯ºÏÔËËãºÍÇó×îÖµ.
??3?x?3?3?0?x?6½â£ºÓÉ?ÇÒx¡Ù0,¹Ê0 1213)£Öª£ºg(x)24ÔÚBÉÏΪ¼õº¯Êý£¬¡àg(x)max=g(1)=£4. £ÛÀý2£ÝÒÑÖªÆæº¯Êýf(x)µÄ¶¨ÒåÓòΪR£¬ÇÒf(x)ÔÚ£Û0£¬+¡Þ)ÉÏÊÇÔöº¯Êý£¬ÊÇ·ñ´æÔÚʵÊým,ʹf(cos2¦È£3)+f(4m£2mcos¦È)>f(0)¶ÔËùÓЦȡʣÛ0, ?£Ý¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö·ûºÏÌõ¼þ2µÄËùÓÐʵÊýmµÄ·¶Î§£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ. ÃüÌâÒâͼ£º±¾ÌâÊôÓÚ̽Ë÷ÐÔÎÊÌ⣬Ö÷Òª¿¼²é¿¼ÉúµÄ×ۺϷÖÎöÄÜÁ¦ºÍÂ߼˼άÄÜÁ¦ÒÔ¼°ÔËËãÄÜÁ¦£¬Êô¡ï¡ï¡ï¡ï¡ïÌâÄ¿. ֪ʶÒÀÍУºÖ÷ÒªÒÀ¾Ýº¯ÊýµÄµ¥µ÷ÐÔºÍÆæÅ¼ÐÔ£¬ÀûÓõȼÛת»¯µÄ˼Ïë·½·¨°ÑÎÊÌâת»¯Îª¶þ´Îº¯ÊýÔÚ¸ø¶¨Çø¼äÉϵÄ×îÖµÎÊÌâ. ´í½â·ÖÎö£º¿¼Éú²»Ò×ÔËÓú¯ÊýµÄ×ÛºÏÐÔÖÊÈ¥½â¾öÎÊÌâ£¬ÌØ±ð²»Ò׿¼ÂÇÔËÓõȼÛת»¯µÄ˼Ïë·½·¨. ¼¼ÇÉÓë·½·¨£ºÖ÷ÒªÔËÓõȼÛת»¯µÄ˼ÏëºÍ·ÖÀàÌÖÂÛµÄ˼ÏëÀ´½â¾öÎÊÌâ. ½â£º¡ßf(x)ÊÇRÉÏµÄÆæº¯Êý£¬ÇÒÔÚ£Û0£¬+¡Þ)ÉÏÊÇÔöº¯Êý£¬¡àf(x)ÊÇRÉϵÄÔöº¯Êý.ÓÚÊDz»µÈʽ¿ÉµÈ¼ÛµØ×ª»¯Îªf(cos2¦È£3)>f(2mcos¦È£4m), ¼´cos2¦È£3>2mcos¦È£4m,¼´cos2¦È£mcos¦È+2m£2>0. Éèt=cos¦È,ÔòÎÊÌâµÈ¼ÛµØ×ª»¯Îªº¯Êýg(t) =t2£mt+2m£2=(t£ m2m2)£+2m£2ÔÚ£Û0£¬ 42;. . 1£ÝÉϵÄÖµºãΪÕý£¬ÓÖת»¯Îªº¯Êýg(t)ÔÚ£Û0£¬1£ÝÉϵÄ×îСֵΪÕý. ¡àµ± m<0,¼´m<0ʱ£¬g(0)=2m£2>0?m>1Óëm<0²»·û£» 2m2mµ±0¡Ü¡Ü1ʱ£¬¼´0¡Üm¡Ü2ʱ£¬g(m)=£+2m£2>0 42?4£22 µ± m>1,¼´m>2ʱ£¬g(1)=m£1>0?m>1.¡àm>2 2×ÛÉÏ£¬·ûºÏÌâĿҪÇóµÄmµÄÖµ´æÔÚ£¬Æäȡֵ·¶Î§ÊÇm>4£22. ¡ñ½õÄÒÃî¼Æ ±¾ÄѵãËùÉæ¼°µÄÎÊÌâÒÔ¼°½â¾öµÄ·½·¨Ö÷ÒªÓУº (1)ÔËÓÃÆæÅ¼ÐԺ͵¥µ÷ÐÔÈ¥½â¾öÓйغ¯ÊýµÄ×ÛºÏÐÔÌâÄ¿.´ËÀàÌâĿҪÇó¿¼Éú±ØÐë¾ßÓмÝԦ֪ʶµÄÄÜÁ¦£¬²¢¾ßÓÐ×ۺϷÖÎöÎÊÌâºÍ½â¾öÎÊÌâµÄÄÜÁ¦. (2)Ó¦ÓÃÎÊÌâ.ÔÚÀûÓú¯ÊýµÄÆæÅ¼ÐԺ͵¥µ÷ÐÔ½â¾öʵ¼ÊÎÊÌâµÄ¹ý³ÌÖУ¬ÍùÍù»¹ÒªÓõ½µÈ¼Ûת»¯ºÍÊýÐνáºÏµÄ˼Ïë·½·¨£¬°ÑÎÊÌâÖнϸ´ÔÓ¡¢³éÏóµÄʽ×Óת»¯Îª»ù±¾µÄ¼òµ¥µÄʽ×ÓÈ¥½â¾ö.ÌØ±ðÊÇ£ºÍùÍùÀûÓú¯ÊýµÄµ¥µ÷ÐÔÇóʵ¼ÊÓ¦ÓÃÌâÖеÄ×îÖµÎÊÌâ. ¡ñ¼ßÃðÄѵãѵÁ· Ò»¡¢Ñ¡ÔñÌâ 1.(¡ï¡ï¡ï¡ï)Éèf(x)ÊÇ(£¡Þ,+¡Þ)ÉÏµÄÆæº¯Êý£¬f(x+2)=£f(x),µ±0¡Üx¡Ü1ʱ£¬f(x)=x,Ôòf(7.5)µÈÓÚ( ) A.0.5 B.£0.5 C.1.5 D.£1.5 2.(¡ï¡ï¡ï¡ï)ÒÑÖª¶¨ÒåÓòΪ(£1£¬1)µÄÆæº¯Êýy=f(x)ÓÖÊǼõº¯Êý£¬ÇÒf(a£3)+f(9£a2)<0,ÔòaµÄȡֵ·¶Î§ÊÇ( ) A.(22£¬3) C.(22£¬4) B.(3£¬10) D.(£2£¬3) ¶þ¡¢Ìî¿ÕÌâ 3.(¡ï¡ï¡ï¡ï)Èôf(x)ÎªÆæº¯Êý£¬ÇÒÔÚ(0£¬+¡Þ)ÄÚÊÇÔöº¯Êý£¬ÓÖf(£3)=0,Ôòxf(x)<0µÄ½â¼¯Îª_________. 4.(¡ï¡ï¡ï¡ï)Èç¹ûº¯Êýf(x)ÔÚRÉÏÎªÆæº¯Êý£¬ÔÚ(£1£¬0)ÉÏÊÇÔöº¯Êý£¬ÇÒf(x+2)=£f(x), 12),f(),f(1)µÄ´óС¹ØÏµ_________. 33Èý¡¢½â´ðÌâ 5.(¡ï¡ï¡ï¡ï¡ï)ÒÑÖªf(x)ÊÇżº¯Êý¶øÇÒÔÚ(0£¬+¡Þ)ÉÏÊǼõº¯Êý£¬ÅжÏf(x)ÔÚ(£¡Þ,0)ÉϵÄÔö¼õÐÔ²¢¼ÓÒÔÖ¤Ã÷. ÊԱȽÏf( a?2x?16.(¡ï¡ï¡ï¡ï)ÒÑÖªf(x)= (a¡ÊR)ÊÇRÉÏµÄÆæº¯Êý£¬ 1?2x(1)ÇóaµÄÖµ£» £ (2)Çóf(x)µÄ·´º¯Êýf1(x); ;. . (3)¶ÔÈÎÒâ¸ø¶¨µÄk¡ÊR+,½â²»µÈʽf1(x)>lg £ 1?x. k7+cos2x)¶Ô47.(¡ï¡ï¡ï¡ï)¶¨ÒåÔÚ(£¡Þ,4£ÝÉϵļõº¯Êýf(x)Âú×ãf(m£sinx)¡Üf(1?2m£ÈÎÒâx¡ÊR¶¼³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§. ax2?18.(¡ï¡ï¡ï¡ï¡ï)ÒÑÖªº¯Êýy=f(x)= (a,b,c¡ÊR,a>0,b>0)ÊÇÆæº¯Êý£¬µ±x>0ʱ£¬f(x) bx?c5ÓÐ×îСֵ2£¬ÆäÖÐb¡ÊNÇÒf(1)<. 2(1)ÊÔÇóº¯Êýf(x)µÄ½âÎöʽ£» (2)Îʺ¯Êýf(x)ͼÏóÉÏÊÇ·ñ´æÔÚ¹ØÓÚµã(1£¬0)¶Ô³ÆµÄÁ½µã£¬Èô´æÔÚ£¬Çó³öµãµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ. ²Î¿¼´ð°¸ Äѵã´Å³¡ ½â£º¡ßf(2)=0,¡àÔ²»µÈʽ¿É»¯Îªf£Ûlog2(x2+5x+4)£Ý¡Ýf(2). ÓÖ¡ßf(x)Ϊżº¯Êý£¬ÇÒf(x)ÔÚ(0£¬+¡Þ)ÉÏΪÔöº¯Êý£¬ ¡àf(x)ÔÚ(£¡Þ,0£©ÉÏΪ¼õº¯ÊýÇÒf(£2)=f(2)=0 ¡à²»µÈʽ¿É»¯Îªlog2(x2+5x+4)¡Ý2 ¢Ù »òlog2(x2+5x+4)¡Ü£2 ¢Ú ÓÉ¢ÙµÃx2+5x+4¡Ý4 ¡àx¡Ü£5»òx¡Ý0 ¢Û ?5?101?5?10µÃ¡Üx£¼£4»ò£1£¼x¡Ü 224ÓɢۢܵÃÔ²»µÈʽµÄ½â¼¯Îª ÓÉ¢ÚµÃ0£¼x2+5x+4¡Ü{x|x¡Ü£5»ò ¢Ü ?5?10?5?10¡Üx¡Ü£4»ò£1£¼x¡Ü»òx¡Ý0} 22¼ßÃðÄѵãѵÁ· Ò»¡¢1.½âÎö£ºf(7.5)=f(5.5+2)=£f(5.5)=£f(3.5+2)=f(3.5)=f(1.5+2)=£f(1.5)=£f(£0.5+2)= f(£0.5)=£f(0.5)=£0.5. ´ð°¸£ºB 2.½âÎö£º¡ßf(x)ÊǶ¨ÒåÔÚ(£1£¬1£©ÉÏµÄÆæº¯ÊýÓÖÊǼõº¯Êý£¬ÇÒf(a£3)+f(9£a2)£¼0. ¡àf(a£3)£¼f(a2£9). ??1?a?3?1?¡à??1?a2?9?1 ¡àa¡Ê(22,3). ?2?a?3?a?9´ð°¸£ºA ?x?0?x?0»ò?¶þ¡¢3.½âÎö£ºÓÉÌâÒâ¿ÉÖª£ºxf(x)£¼0?? f(x)?0f(x)?0???x?0?x?0?x?0?x?0?? »ò? ??»ò? f(x)?f(?3)f(x)?f(3)x??3x?3????¡àx¡Ê(£3,0)¡È(0,3) ;. . ´ð°¸£º(£3£¬0£©¡È(0£¬3£© 4.½âÎö£º¡ßf(x)ΪRÉÏµÄÆæº¯Êý ¡àf(£ 11221)=£f(£),f()=£f(£),f(1)=£f(£1),ÓÖf(x)ÔÚ(£1£¬0)ÉÏÊÇÔöº¯ÊýÇÒ£> 333332>£1. 3¡àf(£ 1212)>f(£)>f(£1),¡àf()£¼f()£¼f(1). 333312´ð°¸£ºf()£¼f()£¼f(1) 33Èý¡¢5.½â£ºº¯Êýf(x)ÔÚ(£¡Þ,0£©ÉÏÊÇÔöº¯Êý£¬Éèx1£¼x2£¼0,ÒòΪf(x)ÊÇżº¯Êý£¬ËùÒÔ f(£x1)=f(x1),f(£x2)=f(x2),ÓɼÙÉè¿ÉÖª£x1>£x2>0,ÓÖÒÑÖªf(x)ÔÚ(0£¬+¡Þ)ÉÏÊǼõº¯Êý£¬ÓÚÊÇÓÐf(£x1)£¼f(£x2),¼´f(x1)£¼f(x2),ÓÉ´Ë¿ÉÖª£¬º¯Êýf(x)ÔÚ(£¡Þ,0)ÉÏÊÇÔöº¯Êý. 6.½â£º(1£©a=1. 2x?11?x£ (2)f(x)=x (x¡ÊR)?f-1(x)=log2 (£1£¼x£¼1). 2?11?x1?x1?x?log2(1£x)£¼log2k,¡àµ±0£¼k£¼2ʱ£¬²»µÈʽ½â¼¯Îª{x|1£k>log2 k1?x£¼x£¼1};µ±k¡Ý2ʱ£¬²»µÈʽ½â¼¯Îª{x|£1£¼x£¼1}. (3)ÓÉlog2 ??m?sinx?4?m?4?sinx?7??2 ¼´?7.½â£º?1?2m??cosx?4£¬¶Ôx724m?1?2m???sinx?sinx?1??4?7?2m?sinx?1?2m??cosx?4?¡ÊRºã³ÉÁ¢, ?m?3???31 m?»òm??22?¡àm¡Ê£Û 31,3£Ý¡È{}. 22ax2?1ax2?18.½â£º(1)¡ßf(x)ÊÇÆæº¯Êý£¬¡àf(£x)=£f(x),¼´???bx?c?bx?c bx?c?bx?ca1ax2?1a1¡àc=0,¡ßa>0,b>0,x>0,¡àf(x)=¡Ý2£¬µ±ÇÒ½öµ±x=ʱµÈºÅ³ÉÁ¢£¬?x?abxbbxb2a5a?15b2?1522£5b+2£¼0,½âµÃ1£¼b£¼2£¬ÓÚÊÇ2=2,¡àa=b,ÓÉf(1)£¼µÃ£¼¼´£¼,¡à2b b2222bb2ÓÖb¡ÊN,¡àb=1,¡àa=1,¡àf(x)=x+ 1. x(2)Éè´æÔÚÒ»µã(x0,y0)ÔÚy=f(x)µÄͼÏóÉÏ£¬²¢ÇÒ¹ØÓÚ(1£¬0£©µÄ¶Ô³Æµã(2£x0,£y0)Ò²ÔÚy=f(x) ;. . ?x02?1?y0?x?0ͼÏóÉÏ£¬Ôò? 2?(2?x0)?1??y0?2?x0?ÏûÈ¥y0µÃx02£2x0£1=0,x0=1¡À2. ¡ày=f(x)ͼÏóÉÏ´æÔÚÁ½µã(1+2,22),(1£2,£22)¹ØÓÚ(1£¬0)¶Ô³Æ. ;.