¸ßÖÐÊýѧÄѵãÍ»ÆÆ_Äѵã08__ÆæÅ¼ÐÔÓëµ¥µ÷ÐÔ(¶þ) ÏÂÔØ±¾ÎÄ

ÄÚÈÝ·¢²¼¸üÐÂʱ¼ä : 2025/12/20 22:50:27ÐÇÆÚÒ» ÏÂÃæÊÇÎÄÕµÄÈ«²¿ÄÚÈÝÇëÈÏÕæÔĶÁ¡£

.

Äѵã8 ¹ØÓÚÆæÅ¼ÐÔÓëµ¥µ÷ÐÔ(¶þ)

º¯ÊýµÄµ¥µ÷ÐÔ¡¢ÆæÅ¼ÐÔÊǸ߿¼µÄÖØµãºÍÈȵãÄÚÈÝÖ®Ò»£¬ÌرðÊÇÁ½ÐÔÖʵÄÓ¦Óøü¼ÓÍ»³ö.±¾½ÚÖ÷Òª°ïÖú¿¼Éúѧ»áÔõÑùÀûÓÃÁ½ÐÔÖʽâÌâ£¬ÕÆÎÕ»ù±¾·½·¨£¬ÐγÉÓ¦ÓÃÒâʶ.

¡ñÄѵã´Å³¡

(¡ï¡ï¡ï¡ï¡ï)ÒÑ֪żº¯Êýf(x)ÔÚ(0£¬+¡Þ)ÉÏΪÔöº¯Êý£¬ÇÒf(2)=0,½â²»µÈʽ£Ûflog2(x2+5x+4)£Ý¡Ý0.

¡ñ°¸Àý̽¾¿ £ÛÀý1£ÝÒÑÖªÆæº¯Êýf(x)ÊǶ¨ÒåÔÚ(£­3£¬3)Éϵļõº¯Êý£¬ÇÒÂú×ã²»µÈʽf(x£­3)+f(x2£­3)<0,Éè²»µÈʽ½â¼¯ÎªA£¬B=A¡È{x|1¡Üx¡Ü5},Çóº¯Êýg(x)=£­3x2+3x£­4(x¡ÊB)µÄ×î´óÖµ. ÃüÌâÒâͼ£º±¾ÌâÊôÓÚº¯ÊýÐÔÖʵÄ×ÛºÏÐÔÌâÄ¿£¬¿¼Éú±ØÐë¾ßÓÐ×ÛºÏÔËÓÃ֪ʶ·ÖÎöºÍ½â¾öÎÊÌâµÄÄÜÁ¦£¬Êô¡ï¡ï¡ï¡ï¼¶ÌâÄ¿.

֪ʶÒÀÍУºÖ÷ÒªÒÀ¾Ýº¯ÊýµÄÐÔÖÊÈ¥½â¾öÎÊÌâ.

´í½â·ÖÎö£ºÌâÄ¿²»µÈʽÖеġ°f¡±ºÅÈçºÎÈ¥µôÊÇÄѵ㣬ÔÚÇó¶þ´Îº¯ÊýÔÚ¸ø¶¨Çø¼äÉϵÄ×îÖµÎÊÌâʱ£¬Ñ§ÉúÈÝÒשµô¶¨ÒåÓò.

¼¼ÇÉÓë·½·¨£º½èÖúÆæÅ¼ÐÔÍÑÈ¥¡°f¡±ºÅ£¬×ª»¯Îªxcos²»µÈʽ£¬ÀûÓÃÊýÐνáºÏ½øÐм¯ºÏÔËËãºÍÇó×îÖµ.

??3?x?3?3?0?x?6½â£ºÓÉ?ÇÒx¡Ù0,¹Ê03£­x2,¼´x2+x£­6>0,½âµÃx>2»òx<£­3,×ÛÉϵÃ2

1213)£­Öª£ºg(x)24ÔÚBÉÏΪ¼õº¯Êý£¬¡àg(x)max=g(1)=£­4.

£ÛÀý2£ÝÒÑÖªÆæº¯Êýf(x)µÄ¶¨ÒåÓòΪR£¬ÇÒf(x)ÔÚ£Û0£¬+¡Þ)ÉÏÊÇÔöº¯Êý£¬ÊÇ·ñ´æÔÚʵÊým,ʹf(cos2¦È£­3)+f(4m£­2mcos¦È)>f(0)¶ÔËùÓЦȡʣÛ0,

?£Ý¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö·ûºÏÌõ¼þ2µÄËùÓÐʵÊýmµÄ·¶Î§£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ.

ÃüÌâÒâͼ£º±¾ÌâÊôÓÚ̽Ë÷ÐÔÎÊÌ⣬Ö÷Òª¿¼²é¿¼ÉúµÄ×ۺϷÖÎöÄÜÁ¦ºÍÂß¼­Ë¼Î¬ÄÜÁ¦ÒÔ¼°ÔËËãÄÜÁ¦£¬Êô¡ï¡ï¡ï¡ï¡ïÌâÄ¿.

֪ʶÒÀÍУºÖ÷ÒªÒÀ¾Ýº¯ÊýµÄµ¥µ÷ÐÔºÍÆæÅ¼ÐÔ£¬ÀûÓõȼÛת»¯µÄ˼Ïë·½·¨°ÑÎÊÌâת»¯Îª¶þ´Îº¯ÊýÔÚ¸ø¶¨Çø¼äÉϵÄ×îÖµÎÊÌâ.

´í½â·ÖÎö£º¿¼Éú²»Ò×ÔËÓú¯ÊýµÄ×ÛºÏÐÔÖÊÈ¥½â¾öÎÊÌâ£¬ÌØ±ð²»Ò׿¼ÂÇÔËÓõȼÛת»¯µÄ˼Ïë·½·¨.

¼¼ÇÉÓë·½·¨£ºÖ÷ÒªÔËÓõȼÛת»¯µÄ˼ÏëºÍ·ÖÀàÌÖÂÛµÄ˼ÏëÀ´½â¾öÎÊÌâ.

½â£º¡ßf(x)ÊÇRÉÏµÄÆæº¯Êý£¬ÇÒÔÚ£Û0£¬+¡Þ)ÉÏÊÇÔöº¯Êý£¬¡àf(x)ÊÇRÉϵÄÔöº¯Êý.ÓÚÊDz»µÈʽ¿ÉµÈ¼ÛµØ×ª»¯Îªf(cos2¦È£­3)>f(2mcos¦È£­4m),

¼´cos2¦È£­3>2mcos¦È£­4m,¼´cos2¦È£­mcos¦È+2m£­2>0.

Éèt=cos¦È,ÔòÎÊÌâµÈ¼ÛµØ×ª»¯Îªº¯Êýg(t)

=t2£­mt+2m£­2=(t£­

m2m2)£­+2m£­2ÔÚ£Û0£¬

42;.

.

1£ÝÉϵÄÖµºãΪÕý£¬ÓÖת»¯Îªº¯Êýg(t)ÔÚ£Û0£¬1£ÝÉϵÄ×îСֵΪÕý.

¡àµ±

m<0,¼´m<0ʱ£¬g(0)=2m£­2>0?m>1Óëm<0²»·û£» 2m2mµ±0¡Ü¡Ü1ʱ£¬¼´0¡Üm¡Ü2ʱ£¬g(m)=£­+2m£­2>0

42?4£­22

µ±

m>1,¼´m>2ʱ£¬g(1)=m£­1>0?m>1.¡àm>2 2×ÛÉÏ£¬·ûºÏÌâĿҪÇóµÄmµÄÖµ´æÔÚ£¬Æäȡֵ·¶Î§ÊÇm>4£­22.

¡ñ½õÄÒÃî¼Æ

±¾ÄѵãËùÉæ¼°µÄÎÊÌâÒÔ¼°½â¾öµÄ·½·¨Ö÷ÒªÓУº

(1)ÔËÓÃÆæÅ¼ÐԺ͵¥µ÷ÐÔÈ¥½â¾öÓйغ¯ÊýµÄ×ÛºÏÐÔÌâÄ¿.´ËÀàÌâĿҪÇó¿¼Éú±ØÐë¾ßÓмÝԦ֪ʶµÄÄÜÁ¦£¬²¢¾ßÓÐ×ۺϷÖÎöÎÊÌâºÍ½â¾öÎÊÌâµÄÄÜÁ¦.

(2)Ó¦ÓÃÎÊÌâ.ÔÚÀûÓú¯ÊýµÄÆæÅ¼ÐԺ͵¥µ÷ÐÔ½â¾öʵ¼ÊÎÊÌâµÄ¹ý³ÌÖУ¬ÍùÍù»¹ÒªÓõ½µÈ¼Ûת»¯ºÍÊýÐνáºÏµÄ˼Ïë·½·¨£¬°ÑÎÊÌâÖнϸ´ÔÓ¡¢³éÏóµÄʽ×Óת»¯Îª»ù±¾µÄ¼òµ¥µÄʽ×ÓÈ¥½â¾ö.ÌØ±ðÊÇ£ºÍùÍùÀûÓú¯ÊýµÄµ¥µ÷ÐÔÇóʵ¼ÊÓ¦ÓÃÌâÖеÄ×îÖµÎÊÌâ.

¡ñ¼ßÃðÄѵãѵÁ· Ò»¡¢Ñ¡ÔñÌâ

1.(¡ï¡ï¡ï¡ï)Éèf(x)ÊÇ(£­¡Þ,+¡Þ)ÉÏµÄÆæº¯Êý£¬f(x+2)=£­f(x),µ±0¡Üx¡Ü1ʱ£¬f(x)=x,Ôòf(7.5)µÈÓÚ( )

A.0.5 B.£­0.5 C.1.5 D.£­1.5

2.(¡ï¡ï¡ï¡ï)ÒÑÖª¶¨ÒåÓòΪ(£­1£¬1)µÄÆæº¯Êýy=f(x)ÓÖÊǼõº¯Êý£¬ÇÒf(a£­3)+f(9£­a2)<0,ÔòaµÄȡֵ·¶Î§ÊÇ( )

A.(22£¬3) C.(22£¬4)

B.(3£¬10) D.(£­2£¬3)

¶þ¡¢Ìî¿ÕÌâ

3.(¡ï¡ï¡ï¡ï)Èôf(x)ÎªÆæº¯Êý£¬ÇÒÔÚ(0£¬+¡Þ)ÄÚÊÇÔöº¯Êý£¬ÓÖf(£­3)=0,Ôòxf(x)<0µÄ½â¼¯Îª_________.

4.(¡ï¡ï¡ï¡ï)Èç¹ûº¯Êýf(x)ÔÚRÉÏÎªÆæº¯Êý£¬ÔÚ(£­1£¬0)ÉÏÊÇÔöº¯Êý£¬ÇÒf(x+2)=£­f(x),

12),f(),f(1)µÄ´óС¹ØÏµ_________. 33Èý¡¢½â´ðÌâ

5.(¡ï¡ï¡ï¡ï¡ï)ÒÑÖªf(x)ÊÇżº¯Êý¶øÇÒÔÚ(0£¬+¡Þ)ÉÏÊǼõº¯Êý£¬ÅжÏf(x)ÔÚ(£­¡Þ,0)ÉϵÄÔö¼õÐÔ²¢¼ÓÒÔÖ¤Ã÷.

ÊԱȽÏf(

a?2x?16.(¡ï¡ï¡ï¡ï)ÒÑÖªf(x)= (a¡ÊR)ÊÇRÉÏµÄÆæº¯Êý£¬

1?2x(1)ÇóaµÄÖµ£»

£­

(2)Çóf(x)µÄ·´º¯Êýf1(x);

;.

.

(3)¶ÔÈÎÒâ¸ø¶¨µÄk¡ÊR+,½â²»µÈʽf1(x)>lg

£­

1?x. k7+cos2x)¶Ô47.(¡ï¡ï¡ï¡ï)¶¨ÒåÔÚ(£­¡Þ,4£ÝÉϵļõº¯Êýf(x)Âú×ãf(m£­sinx)¡Üf(1?2m£­ÈÎÒâx¡ÊR¶¼³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§.

ax2?18.(¡ï¡ï¡ï¡ï¡ï)ÒÑÖªº¯Êýy=f(x)= (a,b,c¡ÊR,a>0,b>0)ÊÇÆæº¯Êý£¬µ±x>0ʱ£¬f(x)

bx?c5ÓÐ×îСֵ2£¬ÆäÖÐb¡ÊNÇÒf(1)<.

2(1)ÊÔÇóº¯Êýf(x)µÄ½âÎöʽ£»

(2)Îʺ¯Êýf(x)ͼÏóÉÏÊÇ·ñ´æÔÚ¹ØÓÚµã(1£¬0)¶Ô³ÆµÄÁ½µã£¬Èô´æÔÚ£¬Çó³öµãµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ.

²Î¿¼´ð°¸

Äѵã´Å³¡

½â£º¡ßf(2)=0,¡àÔ­²»µÈʽ¿É»¯Îªf£Ûlog2(x2+5x+4)£Ý¡Ýf(2). ÓÖ¡ßf(x)Ϊżº¯Êý£¬ÇÒf(x)ÔÚ(0£¬+¡Þ)ÉÏΪÔöº¯Êý£¬ ¡àf(x)ÔÚ(£­¡Þ,0£©ÉÏΪ¼õº¯ÊýÇÒf(£­2)=f(2)=0 ¡à²»µÈʽ¿É»¯Îªlog2(x2+5x+4)¡Ý2 ¢Ù »òlog2(x2+5x+4)¡Ü£­2 ¢Ú ÓÉ¢ÙµÃx2+5x+4¡Ý4 ¡àx¡Ü£­5»òx¡Ý0 ¢Û

?5?101?5?10µÃ¡Üx£¼£­4»ò£­1£¼x¡Ü

224ÓɢۢܵÃÔ­²»µÈʽµÄ½â¼¯Îª

ÓÉ¢ÚµÃ0£¼x2+5x+4¡Ü{x|x¡Ü£­5»ò

¢Ü

?5?10?5?10¡Üx¡Ü£­4»ò£­1£¼x¡Ü»òx¡Ý0} 22¼ßÃðÄѵãѵÁ·

Ò»¡¢1.½âÎö£ºf(7.5)=f(5.5+2)=£­f(5.5)=£­f(3.5+2)=f(3.5)=f(1.5+2)=£­f(1.5)=£­f(£­0.5+2)= f(£­0.5)=£­f(0.5)=£­0.5.

´ð°¸£ºB

2.½âÎö£º¡ßf(x)ÊǶ¨ÒåÔÚ(£­1£¬1£©ÉÏµÄÆæº¯ÊýÓÖÊǼõº¯Êý£¬ÇÒf(a£­3)+f(9£­a2)£¼0. ¡àf(a£­3)£¼f(a2£­9).

??1?a?3?1?¡à??1?a2?9?1 ¡àa¡Ê(22,3). ?2?a?3?a?9´ð°¸£ºA

?x?0?x?0»ò?¶þ¡¢3.½âÎö£ºÓÉÌâÒâ¿ÉÖª£ºxf(x)£¼0??

f(x)?0f(x)?0???x?0?x?0?x?0?x?0?? »ò? ??»ò?

f(x)?f(?3)f(x)?f(3)x??3x?3????¡àx¡Ê(£­3,0)¡È(0,3)

;.

.

´ð°¸£º(£­3£¬0£©¡È(0£¬3£© 4.½âÎö£º¡ßf(x)ΪRÉÏµÄÆæº¯Êý ¡àf(£­

11221)=£­f(£­),f()=£­f(£­),f(1)=£­f(£­1),ÓÖf(x)ÔÚ(£­1£¬0)ÉÏÊÇÔöº¯ÊýÇÒ£­> 333332>£­1. 3¡àf(£­

1212)>f(£­)>f(£­1),¡àf()£¼f()£¼f(1). 333312´ð°¸£ºf()£¼f()£¼f(1)

33Èý¡¢5.½â£ºº¯Êýf(x)ÔÚ(£­¡Þ,0£©ÉÏÊÇÔöº¯Êý£¬Éèx1£¼x2£¼0,ÒòΪf(x)ÊÇżº¯Êý£¬ËùÒÔ f(£­x1)=f(x1),f(£­x2)=f(x2),ÓɼÙÉè¿ÉÖª£­x1>£­x2>0,ÓÖÒÑÖªf(x)ÔÚ(0£¬+¡Þ)ÉÏÊǼõº¯Êý£¬ÓÚÊÇÓÐf(£­x1)£¼f(£­x2),¼´f(x1)£¼f(x2),ÓÉ´Ë¿ÉÖª£¬º¯Êýf(x)ÔÚ(£­¡Þ,0)ÉÏÊÇÔöº¯Êý.

6.½â£º(1£©a=1.

2x?11?x£­

(2)f(x)=x (x¡ÊR)?f-1(x)=log2 (£­1£¼x£¼1).

2?11?x1?x1?x?log2(1£­x)£¼log2k,¡àµ±0£¼k£¼2ʱ£¬²»µÈʽ½â¼¯Îª{x|1£­k>log2

k1?x£¼x£¼1};µ±k¡Ý2ʱ£¬²»µÈʽ½â¼¯Îª{x|£­1£¼x£¼1}.

(3)ÓÉlog2

??m?sinx?4?m?4?sinx?7??2 ¼´?7.½â£º?1?2m??cosx?4£¬¶Ôx724m?1?2m???sinx?sinx?1??4?7?2m?sinx?1?2m??cosx?4?¡ÊRºã³ÉÁ¢,

?m?3???31

m?»òm??22?¡àm¡Ê£Û

31,3£Ý¡È{}. 22ax2?1ax2?18.½â£º(1)¡ßf(x)ÊÇÆæº¯Êý£¬¡àf(£­x)=£­f(x),¼´???bx?c?bx?c

bx?c?bx?ca1ax2?1a1¡àc=0,¡ßa>0,b>0,x>0,¡àf(x)=¡Ý2£¬µ±ÇÒ½öµ±x=ʱµÈºÅ³ÉÁ¢£¬?x?abxbbxb2a5a?15b2?1522£­5b+2£¼0,½âµÃ1£¼b£¼2£¬ÓÚÊÇ2=2,¡àa=b,ÓÉf(1)£¼µÃ£¼¼´£¼,¡à2b

b2222bb2ÓÖb¡ÊN,¡àb=1,¡àa=1,¡àf(x)=x+

1. x(2)Éè´æÔÚÒ»µã(x0,y0)ÔÚy=f(x)µÄͼÏóÉÏ£¬²¢ÇÒ¹ØÓÚ(1£¬0£©µÄ¶Ô³Æµã(2£­x0,£­y0)Ò²ÔÚy=f(x)

;.

.

?x02?1?y0?x?0ͼÏóÉÏ£¬Ôò?

2?(2?x0)?1??y0?2?x0?ÏûÈ¥y0µÃx02£­2x0£­1=0,x0=1¡À2.

¡ày=f(x)ͼÏóÉÏ´æÔÚÁ½µã(1+2,22),(1£­2,£­22)¹ØÓÚ(1£¬0)¶Ô³Æ.

;.