2016行测——数字特性法 下载本文

内容发布更新时间 : 2025/1/24 4:45:07星期一 下面是文章的全部内容请认真阅读。

数字特性法

数字特性法是指不直接求得最终结果,而只需要考虑最终计算结果的某种\数字特性\,从而达到排除错误选项的方法。 掌握数字特性法的关键,是掌握一些最基本的数字特性规律。(下列规律仅限自然数内讨论)

(一)奇偶运算基本法则

【基础】 奇数±奇数=偶数 偶数±偶数=偶数 偶数±奇数=奇数; 奇数±偶数=奇数。

【推论】

1、任意两个数的和如果是奇数,那么差也是奇数;如果和是偶数,那么差也是偶数。 2、任意两个数的和或差是奇数,则两数奇偶相反;和或差是偶数,则两数奇偶相同

(二)整除判定基本法则

1、能被2、4、8、5、25、125整除的数的数字特性

能被2(或5)整除的数,末一位数字能被2(或5)整除; 能被4(或 25)整除的数,末两位数字能被4(或 25)整除; 能被8(或125)整除的数,末三位数字能被8(或125)整除;

一个数被2(或5)除得的余数,就是其末一位数字被2(或5)除得的余数; 一个数被4(或 25)除得的余数,就是其末两位数字被4(或 25)除得的余数; 一个数被8(或125)除得的余数,就是其末三位数字被8(或125)除得的余数。

2、能被3、9整除的数的数字特性

能被3(或9)整除的数,各位数字和能被3(或9)整除

一个数被3(或9)除得的余数,就是其各位相加后被3(或9)除得的余数

3、能被11整除的数的数字特性

能被11整除的数,奇数位的和与偶数位的和之差,能被11整除

(三)倍数关系核心判定特征

如果a∶b=m∶n(m,n互质),则a是m的倍数;b是n的倍数。 如果x= y(m,n互质),则x是m的倍数;y是n的倍数。 如果a∶b=m∶n(m,n互质),则a±b应该是m±n的倍数。

【例22】(江苏2006B-76)在招考公务员中,A、B两岗位共有32个男生、18个女生报考。已知报考A岗位的男生数与女生数的比为5:3,报考B岗位的男生数与女生数的比为2:1,报考A岗位的女生数是( )。 A.15 B.16 C.12 D.10

【答案】C

【解析】报考A岗位的男生数与女生数的比为5:3,所以报考A岗位的女生人数是3的倍数,排除选项B和选项D;代入A,可以发现不符合题意,所以选择C。

【例23】(上海2004-12)下列四个数都是六位数,X是比10小的自然数,Y是零,一定能同时被2、3、5整除的数是多少?( )

A.XXXYXX B.XYXYXY C.XYYXYY D.XYYXYX

【答案】B

【解析】因为这个六位数能被 2、5整除,所以末位为0,排除A、D;因为这个六位数能被3整除,这个六位数各位数字和是3的倍数,排除C,选择B。

【例24】(山东2004-12)某次测验有50道判断题,每做对一题得3分,不做或做错一题倒扣1分,某学生共得82分,问答对题数和答错题数(包括不做)相差多少?( ) A.33 B.39 C.17 D.16

【答案】D

【解析】答对的题目+答错的题目=50,是偶数,所以答对的题目与答错的题目的差也应是偶数,但选项A、B、C都是奇数,所以选择D。

【例25】(国2005一类-44、国2005二类-44)小红把平时节省下来的全部五分硬币先围成一个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是多少元?( ) A.1元 B.2元 C.3元 D.4元

【答案】C

【解析】因为所有的硬币可以组成三角形,所以硬币的总数是3的倍数,所以硬币的总价值也应该是3的倍数,结合选项,选择C。

【注一】很多考生还会这样思考:\因为所有的硬币可以组成正方形,所以硬币的总数是4的倍数,所以硬币的总价值也应该是4的倍数\,从而觉得答案应该选D。事实上,硬币的总数是4的倍数,一个硬币是五分,所以只能推出硬币的总价值是4个五分即两角的倍数。

【注二】 本题中所指的三角形和正方形都是空心的。

【例26】(国2002A-6)1998年,甲的年龄是乙的年龄的4倍。2002年,甲的年龄是乙的年龄的3倍。问甲、乙二人2000年的年龄分别是多少岁?( ) A.34岁,12岁 B.32岁,8岁 C.36岁,12岁 D.34岁,10岁

【答案】D

【解析】由随着年龄的增长,年龄倍数递减,因此甲、乙二人的年龄比在3-4之间,选择D。

【例27】(国2002B-8)若干学生住若干房间,如果每间住4人则有20人没地方住,如果每间住8人则有一间只有4人住,问共有多少名学生?( )。 A.30人 B.34人 C.40人 D.44人

【答案】D

【解析】由每间住4人,有20人没地方住,所以总人数是4的倍数,排除A、B;由每间住8人,则有一间只有4人住,所以总人数不是8的倍数,排除C,选择D。

【例28】(国2000-29)一块金与银的合金重250克,放在水中减轻16克。现知金在水中重量减轻1/19,银在水中重量减轻1/10,则这块合金中金、银各占的克数为多少克?( ) A.100克,150克 B.150克,100克 C.170克,80克 D.190克,60克

【答案】D

【解析】现知金在水中重量减轻1/19,所以金的质量应该是19的倍数。结合选项,选择D。

【例29】(国1999-35)师徒二人负责生产一批零件,师傅完成全部工作数量的一半还多30个,徒弟完成了师傅生产数量的一半,此时还有100个没有完成,师徒二人已经生产多少个?( )

A.320 B.160 C.480 D.580