二元函数极限证明 下载本文

内容发布更新时间 : 2024/12/25 13:27:21星期一 下面是文章的全部内容请认真阅读。

二元函数极限证明

?lim(y?1)??1 y?0 ?lim(x?1)?1 x?0 limlim x?0y?0 ?lim x?0

(2)两个累次极限即使都存在而且相等,也不能保证二重极限存在例f(x,y)?

xyx?y xyx?y

,两个累次极限都存在 limlim y?0x?0 ?0,limlim xyx?y x?0y?0 ?0

16 / 29

二元函数极限证明

但二重极限却不存在,事实上若点p(x,)沿直线y?kx趋于原点时,

kx f(x,y)? x?(kx) ? k1?k

二重极限存在也不能保证累次极限存在

二重极限存在时,两个累次极限可以不存在.例函数f(x,y)?xsin 1y?ysin 1x

由|f(x,y)|?|x|?|y|?0,(x,y)?(0,0).可见二重极限存在,但 1x limsin x?0 和limsin y?0 1y

不存在,从而两个累次极限不存在。 (4)二重极限极限lim

17 / 29

二元函数极限证明

(x,y)?(x0,y0)

f(x,y)和累次极限limlimf(x,y)(或另一次序)都存 x?x0y?y0 在,则必相等.(证)

(5)累次极限与二重极限的关系

若累次极限和二重极限都存在,则它们必相等 二元函数极限的研究 作者:郑露遥指导教师:杨翠

摘要函数的极限是高等数学重要的内容,二元函数的极限是一元函数极限的基础上发展起来的,本文讨论了二元函数极限的定义、二元函数极限存在或不存在的判定方法、求二元函数极限的方法、简单讨论二元函数极限与一元函数极限的关系以及二元函数极限复杂的原因、最后讨论二重极限与累次极限的关系。

关键词二元函数极限、累次极限、二重极限、连续性、判别法、洛必达法则、运算定理

1引言

函数的极限是高等数学中非常重要的内容,关于一元函数的极限及其求法,各种教材中都有详尽的说明。二元函数极限是在一元函数极限的基础上发展起来的,两者之间既有联系又有区别。例如,在极运算法则上,它们是一致的,但随着变量个数的增加,二元函数极限比一元函数

18 / 29

二元函数极限证明

极限变得复杂得多,但目前的各类教材、教学参考书中有关二元函数极限的求法介绍不够详二元函数的极限是反映函数在某一领域内的重要属性的一个基本概念,它刻划了当自变量趋向于某一个定值时,函数值的变化趋势。是高等数学中一个极其重要的问题。但是,一般来说,二元函数的极限比起一元函数的极限,无论从计算还是证明都具有更大的难度。本文就二元函数极限的问题作如下探讨求一元函数的极限问题,主要困难多数集中于求未定型极限问题,而所有未定型的极限又总可转化为两类基本型即00与∞∞型,解决这两类基本未定型的有力工具是洛泌达(lhospital)法则。类似地,二元函数基本未定型的极限问题也有相似的洛泌达法则。为了叙述上的方便,对它的特殊情形(即(x0,y0)=(0,0))作出如下研究,并得到相应的法则与定理。二元函数的极限是反映函数在某一领域内的重要属性的一个基本概念,它刻划了当自变量趋向于某一个定值时,函数

值的变化趋势。是高等数学中一个极其重要的问题。但是,一 般来说,二元函数的极限比起一元函数的极限,无论从计算还 是证明都具有更大的难度。本文就二元函数极限的问题作如 下探讨。

§2.3二元函数的极限与连续 定义

设二元函数有意义,若存在

19 / 29

二元函数极限证明

常数a, 都有

则称a是函数当点趋于点 或 或

趋于点时的极限,记作 。

的方式无关,即不,当(即)时,在点的某邻域内或 必须注意这个极限值与点 论p以什么方

向和路径(也可是跳跃式地,忽上忽下地)趋向

分接近,就能使。只要p与充与a接近到预先任意指定的程度。注意:点p趋于点点方式可有无穷多

种,比一元函数仅有左,右两个单侧极限要复杂的多(图8-7)。 图8-7

同样我们可用归结原则,若发现点p按两个特殊的路径趋于点时, 极限 在该点

存在,但不相等,则可以判定元函数极限不存在的重要方法之一。 极限不存在。这是判断多

20 / 29