一种轮式移动机器人控制系统设计与实现 下载本文

内容发布更新时间 : 2024/5/17 18:13:20星期一 下面是文章的全部内容请认真阅读。

一、 绪论

(一) 移动机器人技术概述

机器人是一自动的、位置可控的、具有编程能力的多功能操作机。机器人技术涉及计算机技术、控制技术、传感器技术、通讯技术、人工智能、材料科学和仿生学等多类学科[7]。

作为机器人学的重要分支,移动机器人能够运动到特定位置,执行相

应任务,具备环境感知、实时决策和行为控制等功能,拥有很高的军事、商业价值[1-5]。

移动机器人按运动方式分为轮式移动机器人步行移动机器人、履带式移动机器人、爬行机器人等;按功能和用途分为医疗机器人、军用机器人、清沽机器人等;按作业空间分为陆地移动机器人、水下机器人、无人飞机和空间机器人。

(二) 移动机器人控制技术动态

1. 移动机器人控制技术发展概况

步入2I世纪,随着电子技术的飞速发展,机器人用传感器的不断研

制、计算机运算速度的显著提高,移动机器人控制技术逐步得到完善和发展。移动机器人从最初的示教模仿型向具备环境信息感知、在线决策等功能的自治型智能化方向发展。

移动机器人控制系统性能不断提高,各类新型移动机器人也纷纷面世。

步行式机器人是指按照迈步方式前进的移动机器人,由于符合动物的行进模式,可很好的在自然环境中运动,具有较强的越野性能。如美国NASA资助研制的丹蒂行走机器人,主要用于远程机器人探险,其控制系统涉及环境感知、障碍物监测、机械臂控制和超远程遥操作等多方面技术。丹蒂计划的最终目标是,为实现在充满碎片的月球或其它星球的表面进行探险提供一种运动机器人解决方案。

轮椅机器人是指使用了移动机器人技术的电动轮椅[8]。德国乌尔姆大学开发一种智能轮椅机器人,使丧失行动能力的人也能外出“走动”。该轮椅机器人,能够自动识别和判断出行驶的前方是否有行人挡路,或是否可能出现行驶不通的情况,自动采取绕行动作,并能够提醒挡路的行人让开道路。该机器人的控制系统,综合运用了多传感器信息融合、模式识别、避障、电机控制和人机接口等技术。

消防机器人是指能在高温、强热辐射、浓烟、地形复杂、障碍物多、化学腐蚀、易燃易爆等恶劣条件下进行灭火和救援工作的移动机器人。其控制系统的设计重点包括障碍物检测、爆等恶劣条件下进行灭火和救援工作的移动机器人。其控制系统的设计重点包括障碍物检测、火焰检测和系统可靠性设计等多项技术。日本投入应用的消防机器人最多,美、英等国已研制出能依靠感觉信息控制的救灾智能机器人。我国上海交大机器人研究所也在国家“863”计划和公安部联合投资下,与上海消防所合作开发消防机器人的产品样机。

另外,随着社会老龄化程度的不断加剧,仿人机器人将弥补年轻劳动力的不足,解决老龄化社会家庭服务和医疗看护等社会问题[9]。此类服务型机器人的控制系统则综合运用了环境感知、路径规划、地图遍历、避障,防跌落等技术,以适合在家中使用。如韩国Yujin机器人科技公司制造的家用机器人iRobot,日本欧姆龙公司开发的电子守卫恐龙,以及三菱重工推出的可协助家庭保健和看家的机器人,都为家用机器人的市场化进程发挥了重要的作用。

2. 移动机器人控制系统关键技术

目前,移动机器人控制技术的研究热点和发展趋势主要包括[1-4]:

(1)运动控制中的路径规划技术。路径规划是移动机器人导航的基本

环节之一,定义是按照某一性能指标搜索一条从起始状态到目标状态的最优或近似最优的无碰路径。根据机器人对环境信息感知的程度,路径规划可分为环境信息完全可知的全局路径规划;环境信息部分未知甚至完全未知,移动机器人通过传感器实时地对的工作环境进行探测,以获取障碍物的位置、形状和尺寸等信息进行的局部路径规划。

(2)控制系统中的传感技术。移动机器人传感技术主要是对机器人自身内部的位置和方向信息以及外部环境信息的检测和处理。获取真实有效的环境信息,是控制系统进行决策的保证。通常采用的传感器包括分为内部传感器和外部传感器。内部传感器主要包括:编码器、线加速度计、

陀螺仪、磁罗盘等。外部传感器主要包括:视觉传感器、超声波传感器、红外传感器、接触和接近传感器等。

(3)控制系统的多传感器信息融合技术。多传感器信息融合是把分却

在不同位置的传感器所提供的局部环境的不完整信息加以综合,消除多传感器之间可能存在的冗余和矛盾,以降低其不确定性,形成对系统环境的相对完整一致的感知描述,从而提高智能系统决策、规划的快速性和正确性,同时降低决策风险。

(4)控制系统的开发技术。重点研究开放式、模块化控制系统。机器

人控制器结构的标准化,以及网络式控制器成为研究热点。编程技术进一步提高在线编程的可操作性,离线编程的人机界面更加友好、自然语言化编程和图形化编程的迸一步推广也是今后研究的重点。

(5)控制系统的智能化技术。控制系统的智能特征包括知识理解、归

纳、推断、反应和问题求解等内容。涉及领域包括图像理解、语音和文字符号的处理与理解、知识的表达和获取等方面。智能控制方法常使用神经网络和模糊控制方法,但前者往往伴随着对存储容量、运算速度的较高要求,这与移动机器人高速高精度运动控制的要求存在一定差距,故模糊控制方法在机器人控制方面有着较大的优势。

(三) 本课题的意义

本课题讨论的移动机器人控制系统,具有很高的系统集成度和广泛的功能扩展空间,很好的兼顾了控制系统的通用性和实用性要求。该控制系统,适用于多种移动机器人平台,如家用娱乐机器人、展览用导游机器人等。并可通过控制单元的扩充和升级,增加语音识别、人脸识别、视觉追踪等交互性更强的功能。

同时,该控制系统的设计完成,对于降低上述各类型机器人的开发难度,缩短从客户提出需求到完成最终产品的开发周期,具有很强的指导意义。

另外,本课题设计的移动机器人控制系统,由于集成有通用微控制器开发平台、避障模块、电机驱动模块等多种功能单元,因此,可作为数字电子技术、自动控制技术、传感器技术、路径规划及人工智能等多学科多领域的通用实验平台。