内容发布更新时间 : 2025/1/9 6:25:18星期一 下面是文章的全部内容请认真阅读。
运筹学 习题答案 9
maxZ?2.5x1?2x2?2x1?x2?8?(8) ?0.5x1?1.5??x1?2x2?10??x1,x2?0
【解】最优解X=(2,4);最优值Z=13
1.8 将下列线性规划化为标准形式 maxZ?x1?4x2?x3?2x1?x2?3x3?20 (1)?
?5x1?7x2?4x3?3??10x1?3x2?6x3??5?x1?0,x2?0,x3无限制?'''?x3,x4,x5,x6为松驰变量 ,则标准形式为 【解】(1)令x3?x3
'''maxZ?x1?4x2?x3?x3'''?2x1?x2?3x3?3x3?x4?20?'''?5x1?7x2?4x3?4x3?x5?3 ?'''??10x1?3x2?6x3?6x3?x6?5'''?x,x,x,x?1233,x4,x5,x6?0minZ?9x1?3x2?5x3?|6x1?7x2?4x3|?20? (2) ?x1?5 ??x1?8x2??8??x1?0,x2?0,x3?0【解】(2)将绝对值化为两个不等式,则标准形式为
运筹学 习题答案 10
maxZ???9x1?3x2?5x3?6x1?7x2?4x3?x4?20??6x?7x?4x?x?201235? ??x1?x6?5??x?8x?82?1??x1,x2,x3,x4,x5,x6?0maxZ?2x1?3x2 (3)??1?x1?5??x1?x2??1?x?0,x?02?1
【解】方法1:
maxZ?2x1?3x2?x1?x3?1?x?x?5 ?14??x1?x2?1??x1,x2,x3,x4?0??x1?1,有x1=x1??1,x1??5?1?4 方法2:令x1??1)?3x2maxZ?2(x1??4?x1???1)?x2??1??(x1?x,x?0?12则标准型为
??3x2maxZ?2?2x1??x3?4?x1???x2?0??x1?x?,x,x?0?123maxZ?min(3x1?4x2,x1?x2?x3)?x1?2x2?x3?30?(4) ?4x1?x2?2x3?15 ??9x1?x2?6x3??5?x无约束,x、x?023?1【解】令y?3x1?4x2,y?x1?x2?x3,x1?x1??x1??,线性规划模型变为
maxZ?y
??x1??)?4x2?y?3(x1?y?x??x???x?x1123????x1???2x2?x3?30 ?x1???x1??)?x2?2x3?15?4(x1?9(x1??x1??)?x2?6x3??5??,x1??,x2、x3?0??x1标准型为
运筹学 习题答案 11
maxZ?y??3x1???4x2?x4?0?y?3x1?y?x??x???x?x?x?011235????x1???2x2?x3?x6?30 ?x1???4x1???x2?2x3?x7?15?4x1??9x1??9x1???x2?6x3?x8?5??,x1??,x2,x3,x4,x5,x6,x7,x8?0??x1
1.9 设线性规划
maxZ?5x1?2x2?2x1?3x2?x3?50 ??4x1?2x2?x4?60?x?0,j?1,?,4?j取基B1?(P1,P3)???21??20?、B=,分别指出B1和B2对应的基变量和非基变量,求出基本解,并2????40??41?说明B1、B2是不是可行基.
【解】B1:x1,x3为基变量,x2,x4为非基变量,基本解为X=(15,0,20,0)T,B1是可行基。B2:x1,x4
是基变量,x2,x3为非基变量,基本解X=(25,0,0,-40)T,B2不是可行基。
1.10分别用图解法和单纯形法求解下列线性规划,指出单纯形法迭代的每一步的基可行解对应于图形上的那一个极点.
maxZ?x1?3x2??2x1?x2?2 (1)?
2x?3x?12?12?x,x?0?12【解】图解法
运筹学 习题答案 12
单纯形法:
C(j) C(i) 0 0 3 0 3 1 对应的顶点: 基可行解 X(1)=(0,0,2,12) 、X(2)=(0,2,0,6,) 、1 Basis X3 X4 X2 X4 X2 X1 X1 -2 2 1 -2 [8] 7 0 1 0 3 X2 [1] 3 3 1 0 0 1 0 0 0 X3 1 0 0 1 -3 -3 0.25 -0.375 -0.375 0 X4 0 1 0 0 1 0 0.25 0.125 -0.875 b 2 12 0 2 6 6 7/2 3/4 11.25 Ratio 2 4 M 0.75 C(j)-Z(j) C(j)-Z(j) C(j)-Z(j) 可行域的顶点 (0,0) (0,2) 37,,0,0)、 423745最优解X?(,),Z?
424X(3)=(
37(,) 42