内容发布更新时间 : 2025/1/21 2:36:38星期一 下面是文章的全部内容请认真阅读。
实用标准文案
第八章 统计回归模型
回归分析是研究一个变量Y与其它若干变量X之间相关关系的一种数学工具.它是在一组试验或观测数据的基础上,寻找被随机性掩盖了的变量之间的依存关系.粗略的讲,可以理解为用一种确定的函数关系去近似代替比较复杂的相关关系.这个函数称为回归函数.
回归分析所研究的主要问题是如何利用变量X、Y的观察值(样本),对回归函数进行统计推断,包括对它进行估计及检验与它有关的假设等.
回归分析包含的内容广泛.此处将讨论多项式回归、多元线性回归、非线性回归以及逐步回归.
一、多项式回归
(1) 一元多项式回归
一元多项式回归模型的一般形式为y??0??1x?...??mxm??.
如果从数据的散点图上发现y与x呈现较明显的二次(或高次)函数关系,则可以选用一元多项式回归.
1. 用函数polyfit估计模型参数,其具体调用格式如下:
p=polyfit(x,y,m) p返回多项式系数的估计值;m设定多项式的最高次数;x,y为对应数据点值. [p,S]=polyfit(x,y,m) S是一个矩阵,用来估计预测误差.
2. 输出预估值与残差的计算用函数polyval实现,其具体调用格式如下: Y=polyval(p,X) 求polyfit所得的回归多项式在X处的预测值Y.
[Y,DELTA]=polyval(p,X,S) p,S为polyfit的输出,DELTA为误差估计.在线性回归模型中,Y±DELTA以50%的概率包含函数在X处的真值.
3. 模型预测的置信区间用polyconf实现,其具体调用格式如下:
[Y,DELTA]=polyconf(p,X,S,alpha) 求polyfit所得的回归多项式在X处的预测值Y及预测值的显著性为1-alpha的置信区间Y±DELTA,alpha缺省时为0.05.
4. 交互式画图工具polytool,其具体调用格式如下: polytool(x,y,m); polytool(x,y,m,alpha);
用m次多项式拟合x,y的值,默认值为1,alpha为显著性水平,默认值为0.05. 例1 观测物体降落的距离s与时间t的关系,得到数据如下表,求s.
t (s) s (cm) t (s) s (cm) 1/30 11.86 8/30 61.49 2/30 15.67 9/30 72.90 3/30 20.60 10/30 85.44 4/30 26.69 11/30 99.08 5/30 33.71 12/30 113.77 6/30 41.93 13/30 129.54 7/30 51.13 14/30 146.48 解 根据数据的散点图,应拟合为一条二次曲线.选用二次模型,具体代码如下: %%%输入数据
精彩文档
实用标准文案
t=1/30:1/30:14/30;
s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; %%%多项式系数拟合 [p,S]=polyfit(t,s,2); 则得回归模型为:
??489.2946st2?65.8896t?9.1329.
%%%y的拟合值及预测值y的置信半径delta [y,dalta]=polyconf(p,t,S); 得结果如下: y=
Columns 1 through 11
11.8729 15.7002 20.6148 26.6168 33.7060 41.8826 51.1465 61.4978 72.9363 85.4622 99.0754 Columns 12 through 14 113.7759 129.5637 146.4389 dalta=
Columns 1 through 11
0.0937 0.0865 0.0829 0.0816 0.0817 0.0823 0.0827 0.0827 0.0823 0.0817 0.0816 Columns 12 through 14 0.0829 0.0865 0.0937 %%%交互式画图 polytool(t,s,2);
polytool所得的交互式图形如图8-1所示.
图8-1
(2) 多元二项式回归
多元二项式回归模型的一般形式为y??0??1x1?...??mxm?1?j,k?m??jkxjxk??.
精彩文档
实用标准文案
多元二项式回归命令:rstool(x,y,’model’,alpha) x表示n?m矩阵;y表示n维列向量;alpha为显著性水平(缺省时为0.05);model表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):
linear(线性):y??0??1x1????mxm;
purequadratic(纯二次):y??0??1x1????mxm?interaction(交叉):y??0??1x1????mxm?n??j?1jjx2j;
1?j?k?m??jkxjxk;
jkquadratic(完全二次):y??0??1x1????mxm?1?j,k?m??xjxk.
例2 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量.
需求量 100 75 1000 600 收入 5 7 价格 80 1200 6 70 500 6 50 300 8 65 400 7 90 1300 5 100 1100 4 110 1300 3 60 300 9 22解 选择纯二次模型,即y??0??1x1??2x2??11x1. ??22x2%%%输入数据
x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9]; x=[x1' x2'];
y=[100 75 80 70 50 65 90 100 110 60]'; %%%多元二项式回归 rstool(x,y,'purequadratic'); 得如下结果:
图8-2
得到一个如图所示的交互式画面,左边是x1(=1000)固定时的曲线y(x1)及其置信区间,右边是x2(=6)固定时的曲线y(x2)及其置信区间.用鼠标移动图中的十字线,或在图下方窗口内输入,
精彩文档