半导体工艺试卷及答案 下载本文

内容发布更新时间 : 2024/12/23 1:43:16星期一 下面是文章的全部内容请认真阅读。

杭州电子科技大学研究生考试卷 (B卷)

考试课程 《半导体工艺与技术》 考试日期 学院 电子信息学院 学 号 姓 年 月 日 成 绩 名 1、什么是CMOS器件的闩锁效应?描述三种阻止闩锁效应的制造技术。(12分) 2、为什么要用区熔法生长硅晶体?比较FZ和CZ优缺点。(10分) 3、什么是LOCOS和STI?为什么在高级IC工艺中,STI取代了LOCOS?(12分) 4、描述双大马士革铜布线(图示)。(12分) 5、列举光刻工艺流程。(12分) 6、列出并阐述刻蚀多晶硅的三个步骤。(10分) 7、列举离子注入和扩散的优缺点。(10分) 8、什么是CMP?列举CMP的优缺点。(10分) 9、列举并阐述三种以上未来32nm CMOS制造新工艺?(12分) 共 页第 页

1、什么是CMOS器件的闩锁效应?描述三种阻止闩锁效应的制造技术。(12分)

答:闩锁效应就是指CMOS器件所固有的寄生双极晶体管(又称寄生可控硅,简称SCR)被触发导通,在电源和地之间形成低阻抗大电流的通路,导致器件无法正常工作,甚至烧毁器件的现象。这种寄生双极晶体管存在CMOS器件内的各个部分,包括输入端、输出端、内部反相器等。当外来干扰噪声使某个寄生晶体管被触发导通时,就可能诱发闩锁,这种外来干扰噪声常常是随机的,如电源的浪涌脉冲、静电放电、辐射等。闩锁效应往往发生在芯片中某一局部区域,有两种情况:一种是闩锁只发生在外围与输入、输出有关的地方,另一种是闩锁可能发生在芯片的任何地方,在使用中前一种情况遇到较多。

2、为什么要用区熔法生长硅晶体?比较FZ和CZ优缺点。(10分)

答:(1)原因:因为区熔法可以得到低至1011cm-1的载流子浓度。区熔生长技术的基本特点是样品的熔化部分是完全由固体部分支撑的,不需要坩埚。柱状的高纯多晶材料固定于卡盘,一个金属线圈沿多晶长度方向缓慢移动并通过柱状多晶,在金属线圈中通过高功率的射频电流,射频功率技法的电磁场将在多晶柱中引起涡流,产生焦耳热,通过调整线圈功率,可以使得多晶柱紧邻线圈的部分熔化,线圈移过后,熔料在结晶为为单晶。另一种使晶柱局部熔化的方法是使用聚焦电子束。整个区熔生长装置可置于真空系统中,或者有保护气氛的封闭腔室内

(2)CZ和FZ区别:CZ是直拉法,就是首先把多晶硅置于坩埚内加热熔化,然后采用小的结晶“种子”——籽晶,再慢慢向上提升、结晶,获得大的单晶锭。

(3)CZ和FZ优缺点比较:FZ是水平区域熔化生长法,就是水平放置、采用感应线圈加热、并进行晶体生长的技术。直拉法在Si单晶的制备中更为常用,占75%以上。直拉法制备Si单晶的优点是:1)成本低;2)能制备更大的圆片尺寸,6英吋(150mm)及以上的Si单晶制备均采用直拉法,目前直拉法已制备出400mm(16英吋)的商用Si单晶;3)制备过程中的剩余原材料可重复使用;4)直拉法制备的Si单晶位错密度低,0~104cm-2。直拉法制备Si单晶的主要缺点是,由于使用坩埚,Si单晶的纯度不如区熔法。 区熔法制备Si单晶的主要优点是,由于不使用坩锅,可制备高纯度的硅单晶,电阻率高达2000Ω-mm,因此区熔法制备的Si单晶主要用于功率器件及电路。区熔法制备Si单晶的缺点是:1)成本高;

3、什么是LOCOS和STI?为什么在高级IC工艺中,STI取代了LOCOS?(12分) 答:(1)LOCOS:即“硅的局部氧化”技术(Local Oxidation of Silicon)CMOS工艺最常用的隔离技术就是LOCOS(硅的选择氧化)工艺,它以氮化硅为掩膜实现了硅的选择氧化,在这种工艺中,除了形成有源晶体管的区域以外,在其它所有重掺杂硅区上均生长一层厚的氧化层,称为隔离或场氧化层。-常规的LOCOS工艺由于有源区方向的场氧侵蚀(SiN边缘形成类似鸟嘴的结构,称为“鸟喙效应”bird beak)和场注入的横向扩散,使LOCOS工艺受到很大的限制。 STI:浅沟槽隔离(STI)是用于隔绝活动区域的制造方法,它会使实际电流不同于模拟结果。具体情况取决于电晶体位置。

(2)取代原因:LOCOS结构影响了有源区长度,为了减小鸟嘴,出现了改进的LOCOS

结构,PBL和PELOX结构。PBL(poly buffer LOCOS多晶衬垫LOCOS)结构是在掩蔽氧化层的SiN和衬底SiO2之间加入一层薄多晶,这样减小了场氧生长时SiN薄膜的应力,也减小了鸟嘴。PELOX(poly encapsulated Locol Oxidation多晶镶嵌LOCOS)结构是在SiN层的顶部和侧部嵌如多晶或非晶薄膜,然后在生长场氧,它同样能减小鸟嘴。因为两种结构增加了工艺的复杂性,故LOCOS一般用于0.5~0.35μm的工艺中。为了更有效的隔离器件的需要,尤其是对于DRAM器件而言;对晶

体管隔离而言,表面积显著减小;超强的闩锁保护能力;对沟道没有侵蚀;与CMP技术兼容;有源区倾斜角度非常小;线宽减小后仍然可以使用;表面非常平坦,有利于下一步工艺的加工。它的缺点主要是工艺成本更贵,更复杂。但是和它的优点相比,成本的增加是可以接受的。因此,在0.25μm及以下的工艺,都使用STI隔离。故而在更高级的IC工艺中STI取代了LOCOS。

4、描述双大马士革铜布线(图示)。(12分)

答:首先硅片覆盖上光阻,曝光显影后干法刻蚀穿过表面硬阻挡层和层间介质停在最底部的氮化硅阻挡层。接下来通光的光阻被去除,重新铺光阻,曝光显影后形成沟槽的光阻,其中一部分留在通孔中,这部分光阻能够防止下半部分的通孔在沟槽干刻过程中被过分刻蚀。最后,进行铜的沉积,并用化学机械抛光将铜平坦化。具体流程如下图所示:

5、列举光刻工艺流程。(12分)

答:一般的光刻工艺要经历硅片表面清洗烘干、涂底、旋涂光刻胶、软烘、对准 曝光、后烘、显影、硬烘、刻蚀、检测等工序。 (1)硅片清洗烘干

方法:湿法清洗+去离子水冲洗+脱水烘焙(热板150~2500C,1~2分钟,氮 气保护) 目的:a、除去表面的污染物(颗粒、有机物、工艺残余、可动离子);b、除去水蒸气,是基底表面由亲水性变为憎水性,增强表面的黏附性(对光刻胶或者是 HMDS-〉六甲基二硅胺烷)。 (2)涂底

方法:a、气相成底膜的热板涂底。HMDS蒸汽淀积,200~2500C,30秒钟;优点:涂底均匀、避免颗粒污染; b、旋转涂底。缺点:颗粒污染、涂底不均匀、HMDS用量大。 目的:使表面具有疏水性,增强基底表面与光刻胶的黏附性。 (3)旋涂光刻胶

方法:a、静态涂胶(Static)。硅片静止时,滴胶、加速旋转、甩胶、挥发溶 剂(原光刻胶的溶剂约占65~85%,旋涂后约占10~20%); b、动态(Dynamic)。低速旋转(500rpm_rotation per minute)、滴胶、加速 旋转(3000rpm)、甩胶、挥发溶剂。 决定光刻胶涂胶厚度的关键参数:光刻胶的黏度(Viscosity),黏度越低,光 刻胶的厚度越薄;旋转速度,速度越快,厚度越薄; 影响光刻胶厚度均运性的参数:旋转加速度,加速越快越均匀;与旋转加速的时 间点有关。一般旋涂光刻胶的厚度与曝光的光源波长有关(因为不同级别的曝光波长对应不 同的光刻胶种类和分辨率) (4)软烘

方法:真空热板,85~120℃,30~60秒;

目的:除去溶剂(4~7%);增强黏附性;释放光刻胶膜内的应力;防止光刻胶 玷污设备; (5)对准并曝光 对准方法:a、预对准,通过硅片上的notch或者flat进行激光自动对准;b、通过对准标志(Align Mark),位于切割槽(Scribe Line)上。另外层间对准,即套刻精度(Overlay),保证图形与硅片上已经存在的图形之间的对准。

曝光中最重要的两个参数是:曝光能量(Energy)和焦距(Focus)。如果能量和焦距调整不好,