《生物化学》王镜岩(第三版)课后习题解答 下载本文

内容发布更新时间 : 2024/5/2 5:55:39星期一 下面是文章的全部内容请认真阅读。

13370),进一步实验表明,该毒素蛋白与FDNB反应并酸水解后,释放出游离的DNP-Gly和DNP-Tyr。关于此蛋白的结构,你能做出什么结论?[该毒素蛋白由两条不同的多肽链通过链间二硫键交联而成,每条多肽链的相对分子质量各在13000左右。]

13.一种蛋白质是由相同亚基组成的四聚体。(a)对该分子说出两各种可能的对称性。稳定缔合的是哪种类型的相互作用(同种或异种)?(b)假设四聚体,如血红蛋白,是由两个相同的单位(每个单位含α和β两种链)组成的。问它的最高对称性是什么?[(a)C4和D2,C4是通过异种相互作用缔合在一起,D2是通过同种相互作用缔合在一起,(b)C2因为每个αβ二聚体是一个不对称的原聚体]

14.证明一个多阶段装配过程比一个单阶段装配过程更容易控制蛋白质的质量。考虑一个多聚体酶复合物的合成,此复合物含6个相同的二聚体,每个二聚体由一个多肽A和一个B组成,多肽A和B的长度分别为300个和700个氨基酸残基。假设从氨基酸合成多肽链,多肽链组成二聚体,再从二聚体聚集成多聚体

-8

酶,在这一建造过程中每次操作的错误频率为10,假设氨基酸序列没有错误的话,多肽的折叠总是正确的,并假设在每一装配阶段剔除有缺陷的亚结构效率为100%,试比较在下列情况下有缺陷复合物的频率:(1)该复合物以一条6000个氨基酸连续的多肽链一步合成,链内含有6个多肽A和6个多肽B。(2)该复合物分3个阶段形成:第一阶段,多肽A和B的合成;第二阶段,AB二聚体的形成;第三阶段,6个AB二聚体装配成复合物。

-8-5

[(1)有缺陷复合物的平均频率是6000×10=6×10]

[(2)由于有缺陷的二聚体可被剔除,因此有缺陷复合物的平均率只是最后阶段的操作次数(5次操作装

-8

配6个亚基)乘以错误频率,即:5×10。因此它比一步合成所产生的缺陷频率约低1000倍。]

第六章 蛋白质结构与功能的关系

提要

肌红蛋白(Mb)和血红蛋白(Hb)是脊椎动物中的载氧蛋白质。肌红蛋白便于氧在肌肉中转运,并作为氧的可逆性贮库。而血红蛋白是血液中的氧载体。这些蛋白质含有一个结合得很紧的血红素辅基。它是

2+

一个取代的卟啉,在其中央有一个铁原子。亚铁(Fe)态的血红素能结合氧,但高铁(+3)态的不能结合氧。红血素中的铁原子还能结合其他小分子如CO、NO等。

肌红蛋白是一个单一的多肽链,含153个残基,外形紧凑。Mb内部几乎都是非极性残基。多肽链中约75%是α螺旋,共分八个螺旋段。一个亚铁血红素即位于疏水的空穴内,它可以保护铁不被氧化成高铁。血红素铁离子直接与一个His侧链的氮原子结合。此近侧His(H8)占据5个配位位置。第6个配位位置是O2的结合部位。在此附近的远侧His(E7)降低在氧结合部位上CO的结合,并抑制血红素氧化或高铁态。

氧与Mb结合是可逆的。对单体蛋白质如Mb来说,被配体(如)O2占据的结合部位的分数是配体浓度的双曲线函数,如Mb的氧集合曲线。血红蛋白由4个亚基(多肽链)组成,每个亚基都有一个血红素基。Hb A是成人中主要的血红蛋白,具有α2β2的亚基结构。四聚体血红蛋白中出现了单体血红蛋白所不具有

+

的新性质,Hb除运载氧外还能转运H和CO2。血红蛋白以两种可以相互转化的构象态存在,称T(紧张)和R(松弛)态。T态是通过几个盐桥稳定的。无氧结合时达到最稳定。氧的结合促进T态转变为R态。

氧与血红蛋白的结合是别构结合行为的一个典型例证。T态和R态之间的构象变化是由亚基-亚基相互作用所介导的,它导致血红蛋白出现别构现象。Hb呈现3种别构效应。第一,血红蛋白的氧结合曲线是S形的,这以为着氧的结合是协同性的。氧与一个血红素结合有助于氧与同一分子中的其他血红素结合。第

+

二,H和CO2促进O2从血红蛋白中释放,这是生理上的一个重要效应,它提高O2在代谢活跃的组织如肌肉

++

的释放。相反的,O2促进H和CO2在肺泡毛细血管中的释放。H、CO2和O2的结合之间的别构联系称为Bohr效应。第三,血红蛋白对O2的亲和力还受2、3-二磷酸甘油酸(BPG)调节,BPG是一个负电荷密度很高的小分子。BPG能与去氧血红蛋白结合,但不能与氧合血红蛋白结合。因此,BPG是降低血红蛋白对氧的亲和力的。胎儿血红蛋白(α2β2)比成年人的血红蛋白 (α2β2)有较高的氧亲和力,就是因为它

16

结合BPG较少。

导致一个蛋白质中氨基酸改变的基因突变能产生所谓分子病,这是一种遗传病。了解最清楚的分子病是镰刀状细胞贫血病。这种病人的步正常血红蛋白称为Hb S,它只是在两条β链第六位置上的Glu倍置换乘Val。这一改变在血红蛋白表面上产生一个疏水小区,因而导致血红蛋白聚集成不溶性的纤维束,并引起红细胞镰刀状化和输氧能力降低。纯合子的病人出现慢性贫血而死亡。地中海贫血是由于缺失一个或多个编码血红蛋白链的基因造成的。

棉衣反映是由特化的白细胞——淋巴细胞和巨噬细胞及其相关的蛋白质之间的相互作用介导的。T淋巴细胞产生T细胞受体,B淋巴细胞产生免疫球蛋白,即抗体。所有的细胞都能产生MHC蛋白,它们在细胞表面展示宿主(自我)肽或抗原(非自我)肽。助T细胞诱导那些产生免疫球蛋白的B细胞和产生T细胞受体的胞毒T细胞 增殖。免疫球蛋白或T细胞受体能与特异的抗原结合。一个特定的祖先细胞通过刺激繁殖,产生一个具有同样免疫能力的细胞群的过程称为克隆选择。

人类具有5个类别的免疫球蛋白,每一类别的生物学功能都是不同的。最丰富的是IgG类,它由4条多肽链组成,两条重链,两条轻链,通过二硫键连接成Y形结构的分子。靠近Y的两“臂”顶端的结构域是多变区,形成来年各个抗原结合部位。一个给顶的免疫球蛋白一般只结合一个大抗原分子的一部分,称为表位。结合经常涉及IgG的构象变化,以便与抗原诱导契合。由于抗体容易制取并具有高度特异性,它成为许多分析和制备生化方法的核心,如酶联免疫吸附测定(ELISA)、Western印迹和单克隆抗体技术等都得到广泛应用。

在发动机蛋白质中蛋白质-配体相互作用上空间和时间的组织达到相当完善的程度。肌肉收缩是由于肌球蛋白和肌动蛋白“精心安排”的相互作用的结果。肌球蛋白是由纤维状的尾和球状的头组成的棒状分子,在肌肉中倍组织成粗丝。G-肌动蛋白是一种单体,由它聚集成纤维状的F-肌动蛋白,后者是细丝的主体。由粗丝和细丝构成肌肉收缩单位——肌节。肌球蛋白上的ATP水解与肌球蛋白头片的系列构象变化相偶联,引起肌球蛋白头从 F-肌动蛋白亚基上解离并与细丝前方的另一F-肌动蛋白亚基再结合。因此肌球

2+2+

蛋白沿肌动蛋白细丝滑动。肌肉收缩受从肌质网释放的Ga刺激。Ga与肌钙蛋白结合导致肌钙蛋白-原肌球蛋白复合体的构象变化,引发肌动蛋白-肌球蛋白相互作用的循环发生。

习题

1.蛋白质A和B各有一个配体X的结合部位,前者的解离常数Kd为10mol/L,后者Kd为10mol/L。(a)哪个蛋白质对配体X的亲和力更高?(b)将这两个蛋白质的Kd转换为结合常数Ka。[(a)蛋白质B;(b)

6-19-1

蛋白质A的Ka=10(mol/L),蛋白质B的Ka=10(mol/L)

2.下列变化对肌红蛋白和血红蛋白的O2亲和力有什么影响?(a)血浆的pH从7.4降到7.2;(b)肺中CO2分压从45torr(屏息)降到15torr(正常);(c)BPG水平从4.5mmol/L(海平面)增至7.5mmol(高空)。[对肌红蛋白:(a)无;(b)无;(c)无。对血红蛋白:(a)降低;(b)增加;(c)降低]

3.在37℃,pH7.4,CO2分压40 torr和BPG正常胜利水平(4.5mmol/L血)条件下,人全血的氧结合测定给出下列数据:

p(O2) 10.6 19.5 27.4 37.5 50.4 77.3 92.3

%饱和度(=100×Y)

10 30 50 70 85 96 98

-6

-9

(a) 根据这些数据,绘制氧结合曲线;估算在(1)100torr p(O2)(肺中)和(2)30 torr p(O2)(静

脉血中)下血的氧百分饱和度。

17

(b) 肺中[100 torr p(O2)]结合的氧有百分之多少输送给组织[30 torr p(O2)]? (c) 如果在毛细血管中pH降到7.0,利用图6-17数据重新估算(b)部分。 [(a)(1)98%,(2)58%;(b)约40%;(c)约50%] 解:(a)图略,从图中克知分别为98%和58%; (b)98%-58%=40%,故约40%;

(c)当pH降到7.0时,据图6-17可知:96%-46%=50%。

n

4.如果已知P50和n,可利用方程(6-15)Y/(1-Y)=[ p(O2)/ P50]计算Y(血红蛋白氧分数饱和度)。设P50=26 torr,n=2.8,计算肺(这里p(O2)=100 torr)中的Y和毛细血管(这里p(O2)=40 torr)中的Y。在这些条件下输氧效率(Y肺-Y毛细血管=ΔY)是多少?除n=1.0外,重复上面计算。比较n=2.8和n=1.0时的ΔY值。并说出协同氧结合对血红蛋白输氧效率的影响。[n=2.8时,Y肺=0.98,Y毛细血管=0.77,所以,ΔY=0.21,n=1.0时,Y肺=0.79,Y毛细血管=0.61,所以,ΔY=0.18,两ΔY之差0.21-0.18=0.03,差值似乎不大,但在代谢活跃的组织中p(O2)<40 torr,因此潜在输氧效率不小,参见图6-15]

2.8

解:Y肺/(1-Y肺)=[100/26] Y肺=0.98

2.8

Y毛/(1-Y毛)=[40/26] Y毛=0.77 ΔY=0.98-0.77=0.21

当n=1.0时,同理,Y肺=0.79 Y毛=0.61 ΔY=0.18

5.如果不采取措施,贮存相当时间的血,2.3-BPG的含量会下降。如果这样的血用于输血可能会产生什么后果?[贮存过时的红血球经酵解途径代谢BPG。BPG浓度下降,Hb对O2的亲和力增加,致使不能给组织供氧。接受这种BPG浓度低的输血,病人可能被窒息。]

6.HbA能抑制HbS形成细长纤维和红细胞在脱氧后的镰刀状化。为什么HbA具有这一效应?[去氧HbA含有一个互补部位,因而它能加到去氧HbS纤维上。这样的纤维不能继续延长,因为末端的去氧HbA分子缺少“粘性”区。]

7.一个单克隆抗体与G-肌动蛋白结合但不与F-肌动蛋白结合,这对于抗体识别抗原表位能告诉你什么?[该表位可能是当G-肌动蛋白聚合成F-肌动蛋白时被埋藏的那部分结构。]

-7

8.假设一个Fab-半抗原复合体的解离常数在25℃和pH7时为5×10mol/L。(a)结合的标准自由能(25℃和pH7时)是多少?(b)此Fab的亲和力结合常数是多少?(c)从该复合体中释放半抗原的速度常数为

-10

120S。结合的速度常数是多少?此说明在结合半抗原时抗体中的结构变化是大还是小?[(a)ΔGˊ

6-18-1-1

=35.9kJ/mol;(b)Ka=2×10molL;(c)结合速度常数k=2×10molSL,此值接近于小分子与蛋白质相

89-1-1

遇(结合)的扩散控制限制(10至10molSL)]

0

解:(a)ΔGˊ=-RTlnKa=-8.31×298×ln2000000=-35.9kJ/mol

-76-1

(b)Ka=1/Keq=1/5×10=2×10molL

9.抗原与抗体的结合方式与血红蛋白的氧结合相似。假设抗原是一价,抗体是n价,即抗体分子有n个结合部位,且各结合部位的结合常数Ka值是相同的,则可证明当游离抗原浓度为[L]时,结合到抗体上的抗原浓度[Lp]与抗体的总浓度[Pr]之比值:N =[Lp]/[Pr]=(nKa [L])/(1+Ka [L]),N实际上表示被一个抗体分子结合的抗原分子平均数。

(a)证明上面的方程可重排为N /[L]=Kan-KaN 此方程式称Scatchard方程,方程表明,N /[L]对N作图将是一条直线。

(b)根据Scatchard方程,利用下列数据作图求出抗体-抗原反应的n和Ka值。

[L] mol/L 1.43×10

-5

2.57×10

-5

N 0.5 0.77

18

6.00×10

-4

1.68×10

-4

3.70×10

-5

1.20 1.68 1.85

[(a)第一个方程两边各乘(1+Ka [L]),然后两边各除以[L],并重排第2个方程;(b)根据第二方程,

-4

N /[L]对N作图的斜率是-Ka,N /[L]=0时的截距给出n。利用数据作图得Ka =2.2×10 mol/L,n=2.1。因为结合部位数目只可能是整数,所以n=2]

10.一个典型的松弛肌节中细丝长约2μm,粗丝长约为1.5μm。 (a) 估算在松弛和收缩时粗丝和细丝的重叠情况。

(b) 一次循环中肌球蛋白沿细丝滑行“一步”移动约7.5nm,问一次收缩中每个肌动蛋白纤维需要进行

多少个步?

[(a)约0.75nm,(b)约67步] 解:(a)根据P281图6-35A所示,

当松弛时重叠总长度为:(1+1)-(3-1.5)=0.5μm 0.5/2=0.25μm 当收缩时重叠总长度为:(1+1)-(2-1.5)=1.5μm 1.5/2=0.75μm

3

(b)(3-2)÷2×10÷7.5≈67步

第七章 蛋白质的分离、纯化和表征

提要

蛋白质也是一种两性电解质。它的酸碱性质主要决定于肽链上可解离的R基团。对某些蛋白质说,在某一pH下它所带的正电荷与负电荷相等,即净电荷为零,此pH称为蛋白质的等电点。各种蛋白质都有自己特定的等电点。在等电点以上的pH时蛋白质分子带净负电荷,在等电点以下的pH时带净正电荷。蛋白质处于等电点时溶解度最小。在无盐类干扰情况下,一种蛋白质的质子供体基团解离出来的质子数与质子受体基团结合的质子数相等时的pH是它的真正等电点,称为等离子点,它是该蛋白质的特征常数。

测定蛋白质相对分子质量(Mr)的最重要的方法是利用超速离心机的沉降速度法和沉降平衡法。沉降系数(s)的定义是单位离心场强度的沉降速度。s也常用来近似地描述生物大分子的大小。凝胶过滤是一种简便的测定蛋白质Mr的方法。SDS-聚丙乙酰胺凝胶电泳(PAEG)用于测定单体蛋白质或亚基的Mr。

蛋白质溶液是亲水胶体系统。蛋白质分子颗粒(直径1~100nm)是系统的分散相,水是分散介质。蛋白质分子颗粒周围的双电层和水化层是稳定蛋白质胶体系统的主要因素。

分离蛋白质混合物的各种方法主要根据蛋白质在溶液中的下列性质:(1)分子大小;(2)溶解度;(3)电荷;(4)吸附性质;(5)对配体分子特异的生物学亲和力。透析和超过滤是利用蛋白质不能通过半透膜的性质使蛋白质分子和小分子分开,常用于浓缩和脱盐。密度梯度离心和凝胶过滤层析都已成功地用于分离蛋白质混合物。等电点沉淀、盐析和有机溶剂分级分离等方法常用于蛋白质分离的头几步。移动界面电泳、各种形式的区带电泳,特别是圆盘凝胶电泳、毛细血管电泳以及等电聚焦具有很高的分辨率。纤维素离子交换剂和Sephadex离子交换剂的离子交换柱层析已广泛地用于蛋白质的分离纯化。HPLC和亲和层析法是十分有效的分离纯化方法。

蛋白质制品的纯度鉴定通常采用分辨率高的物理化学方法,例如PAGE、等电聚焦、毛细血管电泳、沉降分析和HPLC等。如果制品是纯的,在这些分析的图谱上只呈现一个峰或一条带。必须指出,任何单独鉴定只能认为是蛋白质分子均一性的必要条件而不是充分条件。

习题

1.测得一种血红素蛋白质含0.426%铁,计算最低相对分子质量。一种纯酶按重量计算含亮氨酸1.65%和异亮氨酸2.48%,问其最低相对分子质量是多少?[13110;15870]

19

解:(1)蛋白质Mr=55.8÷0.426%=13100 (2)亮氨酸和异亮氨酸的分子质量都是131Da,根据两种氨基酸的含量来看,异亮氨酸:亮氨酸=2.48%:1.65%=3:2,所以在此蛋白质中的亮氨酸至少有两个,异亮氨酸至少有三个,那么:蛋白质Mr =2×(131-18)/1.65%=13697Da

2.超速离心机的转速为58000r/min时,(1)计算角速度ω,以rad/s表示;(2)计算距旋转中心6.2cm处的离心加速度a;(3)此离心加速度相当于重力加速度“g”的多少倍?

82

[(1)ω=6070.7rad/s (2)a=2.284×10cm/s;(3)a=233061g] 解:(1)ω=58000×2π/60=6070.7rad/s

282

(2)a=(6070.7)×6.2=2.284×10cm/s

6

(3)2.285×10/9.8=233061

2

3.一种蛋白质的偏微比容为0.707cm/g,当温度校正为20℃,溶剂校正为水时扩散系数(D20.W)为13.1×-723

10cm/s.沉降系数(S20.W)为2.05S。20℃时水的密度为0.998g/ cm,根据斯维德贝格公式计算该蛋白质的相对分子质量。[13000]

-7

解:Mr=(RTS)/[D(1-υρ)]=8.314×(273+20)×2.05/[13.1×10(1-0.707×0.998)]=13000

4.一个层析柱中固定相体积(Vs)为流动相体积(Vm)的1/5。假设某化合物的分配系数,(a)Kd=1;(b)Kd=50。计算该化合物的有效分配系数(Keff),也称容量因子(capacity)。[(a)Keff=0.2;(b)Keff=10]

5.指出从分子排阻层析柱上洗脱下列蛋白质时的顺序。分离蛋白质的范围是5000到400000;肌红蛋白、过氧化氢酶、细胞色素C、肌球蛋白、胰凝乳蛋白酶原和血清清蛋白(它们的Mr见表7-4)。[肌球蛋白、过氧化氢酶、血清清蛋白、胰凝乳蛋白酶原、肌红蛋白、细胞色素C]

6.由第5题所述的,从分子排阻层析柱上洗脱细胞色素C、β-乳球蛋白、未知蛋白和血清红蛋白时,其洗脱体积分别为118、58、37和24ml,问未知蛋白的Mr是多少?假定所有蛋白质都是球形的,并且都处于柱的分级分离范围。[52000]

7.在下面指出的pH下,下述蛋白质在电场中相哪个方向移动,即向正极、负极还是不动?(根据表7-2的数据判断。)(1)血清蛋白,pH5.0;(2)β-乳球蛋白,pH5.0和7.0;(3)胰凝乳蛋白酶原,pH5.0、9.1和11。[(1)正极;(2)负极、正极;(3)负极、不动、正极] 解:(1)卵清蛋白pI=4.6,pH=5.0>4.6 带负电,向正极移动; (2)β-乳球蛋白pI=5.2,pH=5.0<5.2 带正电,向负极移动; pH=7.0>5.2 带负电,向正极移动; (3)胰凝乳蛋白酶原pI=9.1,pH=5.0<9.1 带正电,向负极移动;

pH=9.1=pI 净电荷为零,不移动; pH=11>9.1 带负电,向正极移动;

8.(1)当Ala、Ser、Phe、Leu、Arg、Asp和His的混合物在pH3.9进行纸电泳时,哪些氨基酸移向正极?哪些氨基酸移向负极?(2)纸电泳时,带有相同电荷的氨基酸常有少许分开,例如Gly可与Leu分开,试说明为什么?(3)设Ala、Val、Glu、Lys和Thr的混合物pH为6.0,试指出纸电泳后氨基酸的分离情况。

PI值:Ala:6.02 Ser:5.68 Phe:5.48 Leu:5.98 Arg:10.76 Asp:2.97 His:7.59 [(1)Ala、Ser、Phe和Leu以及Arg和His向负极,Asp移向正极;(2)电泳时,具有相同电荷的较大分子比较小分子移动得慢,因为电荷/质量之比较小,因而引起每单位质量迁移的驱动力也较小。(3)Glu移向正极,Lys移向负极,Val、Ala和Thr则留在原点。]

20