内容发布更新时间 : 2024/11/16 10:30:58星期一 下面是文章的全部内容请认真阅读。
转速检测及控制模块设计
转速检测通过检测在电机转盘上的磁钢对霍尔传感器产生得脉冲计数,从而算出电机的转速。霍尔传感器的原理是当磁钢靠近霍尔传感器时引起磁场变换,利用磁场对垂直加载的电流产生的偏向作用(电磁感应),使正交方向的极板产生电势差,通过放大等处理得到开关量的信号变化。霍尔传感器测转速的电路图如图所示。
6
四、 系统软件设计
为了增强程序的可读性,设计时选用得分模块编程。根据系统功能的描述,主要分为以下几个模块:主函数模块,系统参数初始化模块,LCD初始化、显示模块,按键识键和数据处理模块,中断模块和PWM控制模块。
主程序设计
主程序的设计主要是完成各种模块初始化以及函数的调用。如系统的初始化、LCD初始化和定时器的初始化,然后根据按键判断,没有按键按下的时候,LCD显示初始设置值,当有按键按下的时候,则执行按键所对应的功能,然后进一步在LCD上显示出来,通过LED指示灯和数码管指示相应的模式。
LCD显示模块设计
为了节省I/O口的使用,选用串行数据传送的方式。在LCD显示字程序中,要先对其初始化,进行命令、数据发送和汉字、字母显示的设置,然后根据按键的输入,在LCD上输出相应内容。LCD显示流程图如图所示。
7
返回 根据按键显示汉字或字汉字、字母显示设置 发送命令、数据 LCD初始化 入口 LED灯和数码管指示
程序中用了一个Led灯的亮灭指示电机的正转/反转。利用一位数码管的显示指示模式的切换,这样可以直观的观察工作状态。由于该程序简单,因此直接将该段程序嵌入按键程序中。
按键程序模块
接通电源,判断是否有按键,在Mode键下进行模式选择,模式1为“电机正反转设置”、模式2为“转速的设置”、模式3、4、5为“手动控制转速”、模式4为“PID自动控制转速”;UP和DN进行参数修改。按键扫描的流程图如3.6所示:
PID计算程序
微机化控制系统当中控制算法的占有十分重要部分,整个控制系统的主要功能是由控制算法来实现的。目前世界上所应用控制算法有很多种。根据偏差的比例、微积分进行的系统控制,被称作PID控制。经过无数实践证明和理论分析都表明,PID控制能够满足绝大多数的工业对象的控制要求,目前PID控制仍是应用最广泛的控制算法之一。如下图4.3所示,该图是PID系统经典原理图,是一种典型的闭环控制。
8
在需要对系统进行调节控制时,PID控制是调节器最常用的控制方式,PID控制系统原理图如下图所示,图中可看出该控制为典型的闭环控制,系统由PID调节器、执行器和控制对象组成,通过调节器的PID控制可以使被控对象达到相应控制要求。
图4.3 PID控制系统原理框图 外部中断
+r(t)-微 分e(t)积 分+比 例+u(t)执行机构对象c(t)外部中断主要是对霍尔传感器检测到的脉冲输入进行计数,然后送到定时器中断中进行进一步处理。它与定时器中断的工作原理都为当中断发出请求的时候,正在执行主程序的单片机CPU响应中断,中断完成后重新返回主程序中。
外部中断流程图如3.5所示:
count0计数加1 入口
返回 图3.5外部中断0流程图
定时器中断
定时器T0为每隔一秒对采集到的脉冲处理,最后计算成每分钟的速度;同时定时器0还对PWM控制进行计算,实现PWM占空比的调节。
通过定时器计算实时速度的流程图如3.3所示,通过定时器完成PWM控制调节流程图如3.4所示:
9
入 定时器 计数 是否N Y 采集脉冲,计 计数值清0,采集脉 返回
图3.3定时器T0程序流程图