内容发布更新时间 : 2025/1/5 9:26:11星期一 下面是文章的全部内容请认真阅读。
学而思
第十五讲 鸡兔同笼进阶
我国古代数学名著《孙子算经》中有这样的一道应用题:今有雉兔同笼,
上有三十五头,下有九十四足,问雉兔各有几何?意思是说:鸡和兔同关在一个笼子里,已知鸡与兔共有35只,鸡脚与兔脚共有94只,问鸡、兔各有多少只? 这就是著名的鸡兔同笼问题。怎样解决这个问题呢?我们通常把题中相当于“鸡”和“兔”的两种量,全部假设看作“鸡”或“兔”,然后找出与实际数量的差,由此求出“鸡”或“兔”,这种解决问题的方法就是假设法。鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置出来。解鸡兔同笼问题的基本关系式是:
解法1:鸡的只数=(每只兔脚数× 兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数) 兔的只数=总只数-鸡的只数
解法2:兔的只数=( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数) 鸡的只数=总只数-兔的只数
例1 、鸡兔同笼,头共46,足共128,鸡兔各几只? 解:假设 46只都是兔。 共应有: 4×46=184(只)
比128只脚多:184-128=56(只) 如果用一只鸡来置换一只兔,就要减少:4-2=2(只)
鸡的只数:56÷2=28(只) 兔的只数:46-28=18(只)
例2、小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只?
解:假设16只都是鸡。 共应有:2×16=32(只) 比44只脚少: 44-32=12(只)
如果用一只兔来置换一只鸡,就要增加:4-2=2(只)
兔的只数:12÷2=6(只)
鸡的只数:16-6=10(只)
1、鸡兔同笼,共有头100个,足316只,那么鸡有多少只?兔有多少只? 2、、 鸡兔同笼,共有30个头,88只脚。笼子中鸡、兔各有多少只?
3、鸡与兔共40只,鸡的脚数与兔的脚数共有90只。问鸡、兔各多少只?
1
4、现在有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大、小油桶各多少个? 5、某人领得工资240元,有2元,5元,10元三种人民币共50张,其中2元和5元的张数一样多,那么10元的有多少张?
6、四(6)班42个同学向2008年北京奥运会捐款。其中12人每人捐2元,其余同学每人捐5元或10元,一共捐了229元。求捐5元和10元的同学各有多少人?
例3、乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。问:搬运过程中共打破了几只花瓶?
分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费0.24×500=120(元)。实际上只得到115.5元,少得120-115.5=4.5(元)。搬运站每打破一只花瓶要损失0.24+1.26=1.5(元)。因此共打破花瓶4.5÷1.5=3(只)。 解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。
1、有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元。结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只?
2、运输队为商店运送花瓶500箱,每箱6个花瓶,已知每10个花瓶的运费5.5元,损坏一个花瓶要赔偿成本11.5元(这个花瓶的运费当然也得不到了)。结果这个运输队共得到运费1553.6元。问共损坏了多少个花瓶?
3、工人运青瓷花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔100元,运完这批花瓶后,工人共得4400元,则损坏了多少只?
4、运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元。运后运费为8880元,损失了几箱?
2
例4、某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。共有12道题,王刚得了84分。王刚做错了几题?
分析:假设全做对,应得9×12=108分,现在少了108-84=24分。而做错一题,不但得不到9分,反而需要倒扣3分,相差了12分,所以错了24÷12=2题。
1、 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分。小华参加了这次竞赛,得了64分。问:小华做对几道题?
2、某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分。小华得了76分,问他做对几题?
3、一次数学竞赛共20道题,每答对一道题得6分,每答错一道题倒扣4分。小明答完了全部的题目却得了零分,那么他一共答错了多少道题?
4、小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣2分,又知道他做错的题和没做的一样多。问小毛做对几道题 ?
5、一张数学试卷,共有25道选择题,做对一题得4分,做错一题扣1分。如不做,不得分也不扣分。若某同学得了78分,那么,他做对了多少题?做错多少题?不做多少题?
例5、有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只? 分析:这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿。因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为 6×18=108(条),所差 118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛。这样剩下的18-5=13(只)便是蜻蜓和蝉的只数,再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少 20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求
3