内容发布更新时间 : 2024/11/14 19:07:53星期一 下面是文章的全部内容请认真阅读。
电大《微积分初步》形成性考核作业(一)参考答案
——函数,极限和连续
一、填空题(每小题2分,共20分) 1.?2,3??3,??? 或填?xx?2且x?3?; 2.???,5?或填?xx?5?;
3.??2,?1????1,2?或填?x?1?x?2且x??1?; 4.x2?6; 5.2; 6.x2?1;
3 2二、单项选择题(每小题2分,共24分)
1.B 2.A 3.D 4.C 5.D 6.D 7.C 8.D 9.C 10.B 11.D 12.A 三、解答题(每小题7分,共56分)
1、1/4; 2、7/2; 3、3/2; 4、2/3; 5、2; 6、-1/2; 7、-1/8; 8/16 7.x??1; 8.1; 9.2; 10.
《微积分初步》形成性考核作业(二)参考答案
——导数、微分及应用
一、填空题(每小题2分,共20分)
121.; 2.x?y?1?0; 3.x?2y?3?0; 4.2x?11ln2; 5.?6; 6.27?1?ln3?;7.?2;
xx8.?2; 9.?1,???; 10. a?0.
二、单项选择题(每小题2分,共24分)
1.D 2.C 3.C 4.B 5.D 6.C 7.C 8.C 9.A 10.B 11.B 12.A
三、解答题(每小题7分,共56分)
?11.解:y??2xe?xe??2?x21x1x?x???2x?1?e. ?12.解:y??4cos4x?3sinxcos2x. 3.解:y??4.解:y??ex?12x?1?1. 2x3sinx3x??x?tanx. 2cosx25.解:方程两边同时对x求微分,得
2xdx?2ydy?xdy?ydx?0?2x?y?dx??x?2y?dy?dy?
2x?ydxx?2y 6. 解: 原方程可化为?x?y?2?1
?x?y??1,y??x?1
?y???1,dy??dx 7. 解:方程两边同时对x求微分,得
exdx?eydy?xeydx?2xdx?0
xeydy???ex?ey?2x?dx
?dy??ex?ey?2xxeydx. 8. 解:方程两边同时对x求微分,得
?sin?x?y??dx?dy??eydy?0
?dy?sin?x?y?ey?sin?x?y?dx 微积分初步》形成性考核作业(三)参考答案
——不定积分、极值应用问题
一、填空题(每小题2分,共20分)
1.xlnx2?2x?c; 2.?4e?2x; 3.?1?x?ex; 4.2cos2x; 5.1x;7.e?x2dx; 8.sinx?c; 9.1F?2x?3??c; 10. ?122F?1?x2??c.
二、单项选择题(每小题2分,共16分) 1.A 3.A 4.A 5.A 6.A 7.C 8.B 三、解答题(每小题7分,共35分)
1.解:原式=???3?x?sinx??dx?3lnx2?x??3xx?cosx?c.
2.解:原式=
12??2x?1?10d?2x?1??12?111?2x?1?11?c?122?2x?1?11?c. 3.解:原式=??sin1d??1???cos1x?x?x?c.
6.?4cos2x;
4.解:原式=?11111xdcos2x??xcos2x?cos2xdx??xcos2x?sin2x?c. ??222245.解:原式=??xde?x??xe?x??e?xdx??xe?x?e?x?c???x?1?e?x?c. 四、极值应用题(每小题12分,共24分)
1.解: 设矩形ABCD的一边AB?x厘米,则BC?60?x厘米, 当它沿直线AB旋转一周后,得到圆柱的体积
V??x?60?x?,?0?x?60?
60?x??2x?60?x???0得x?20 令V???????22当x??0,20?时,V??0;当x??20,60?时,V??0.
?x?20是函数V的极大值点,也是最大值点.
此时60?x?40
答:当矩形的边长分别为20厘米和40厘米时,才能使圆柱体的体积最大. 2. 解:设成矩形有土地的宽为x米,则长为于是围墙的长度为L?3x?令L??3?
易知,当x?12时,L取得唯一的极小值即最小值,此时
216?18 x216米, x432,?x?0? x432?0得x?12?取正? 2x
答:这块土地的长和宽分别为18米和12米时,才能使所用的建筑材料最省. 五、证明题(本题5分)
《微积分初步》形成性考核作业(四)参考答案
——定积分及应用、微分方程
一、填空题(每小题2分,共20分)
23162?11.?; 2.2; 3.y?x2?; 4.4; 5.a2; 6.0;7.; 8.y?ex;
333429.y?ce?3x; 10. 4.