多因素方差分析资料讲解 下载本文

内容发布更新时间 : 2024/12/28 10:56:08星期一 下面是文章的全部内容请认真阅读。

精品文档

? ?

Simple,除了作为参考的水平外,对预测变量或因素变量的每一水平都与参考水平进行比较。选择“Last”或“First”作为 参考水平。

? Difference,对预测变量或因素每一水平的效应,除第一水平以外,都与其前面各水平的平均效应进行比较。与Helmert对照 方法相反。

? ?

Helmert,对预测变量或因素的效应,除最后一个以外,都与后续的各水平的平均效应相比较。

? Repeated,对相邻的水平进行比较。对预测变量或因素的效应,除第一水平以外,对每一水平都与它前面的水平进行比较。

? ?

Polynomial,多项式比较。第一级自由度包括线性效应与预测变量或因素水平的交叉。第二级包括二次效应等。各水平彼此

的间隔被假设是均匀的。

③ 修改比较方法

先按步骤①选中因子变量,再选比较方法,然后单击“Change”按钮,选中的(或改变的)比较方法显示在步骤①选中的因子变量后面的括号中。

④设置比较的参考类

在“Reference Category”栏比较的参考类有两个,只有选择了“Deviation”或“Simple”方法时才需要选择参考水平。共有两种可能的选择,最后一个水平“Last”选项和第一水平“First”项。系统默认的参考水平是“Last”。

6) 选择均值图

在主对话框中单击“Plot”按钮,打开“Profile Plots”对话框,如图5-10所示。在该对话框中设置均值轮廓图。

精品文档

精品文档

如图5-10 “Profile Plots”对话框

均值轮廓图(Profile Plots)用于比较边际均值。轮廓图是线图,图中每个点表明因变量在因素变量每个水平上的边际均值的估计值。如果指定了协变量,该均值则是经过协变量调整的均值。因变量做轮廓图的纵轴;一个因素变量做横轴。

做单因素方差分析时,轮廓图表明该因素各水平的因变量均值。

双因素方差分析时,指定一个因素做横轴变量,另一个因素变量的每个水平产生不同的线。如果是三因素方差分析,可以指定第三个因素变量,该因素每个水平产生一个轮廓图。双因素或多因素轮廓图中的相互平行的线表明在因素间无交互效应;不平行的线表明有交互效应。

? ? ? ?

Factors 框中为因素变量列表。

Horlzontal Axis 横坐标框,选择选择“Factors”框中一个因素变量做横坐标变量。被选的变量名反向显示,单击向右拉箭

头按钮,将变量名送入相应的横坐标轴框中。

如果只想看该因素变量各水平的,因变量均值分布,单击“Add”按钮,将所选因素变量移入下面的“Plots”框中。否 则,不点击“Add”按钮,接着做下步。

? Separate Lines 分线框。如果想看两个因素变量组合的各单元格中因变量均值分布,或想看两个因变量间是否存在交互效应,

选择“Factors”框中另一个因素变量,单击右拉按钮将变量名送入“Separate Lines”框中。单击“Add”按钮,将自动生成

的图形表达式送入到“Plots”栏中。分线框中的变量的每个水平将在图中是一条线。图形表达式是用“*”连接的两个因素变 量名。

精品文档

精品文档

?

Separate Plots 分图框。如果在“Factors”栏中还有因素变量,可以按上述方法,将其送入“Separate Plot”框中,单击

“Add”按钮,将自动生成的图形表达式送入到“Plots”栏中。图形表达式是用“*’连接的三个因素变量名。分图变量的每个 水平生成一张线图。

? 将图形表达式送到“Plots”框后发现有错误,单击选错的变量,单击“Remove”按

钮,将其取消,再重新输入正确内容。

在检查无误后,按“Continue”按钮确认,返回到主对话框。如果取消做的设置单击“Cancel”按钮

7) 选择多重比较

在主对话框中单击“Post Hoc”选项,打开“Post Hoc Multiple Comparisons for Observed Means”对话框,从“Factor(s)”框选择变量,单击向右拉按钮,使被选变量进入“Post Hoc test for”框。本例子选择了“a”和“b”。

然后选择多重比较方法。在对话框中选择多重比较方法。本例子选择了“Duncan”和“Tamhane's T2”。

8)选择保存运算值

图5-11 Save对话框

在主对话框中,单击“Save”按钮,打开“Save”设置对话框,如图5-11所示。通过在对话框中的选择,可以将所计算的预测值、残差和检测值作为新的变量保存在编辑数据文件中。以便于在其他统计分析中使用这些值。 ① Predicted Values 预测值

1. Unstsndardized,非标准化预测值。

2. Weighted,如果在主对话框中选择了WLS变量,选中该复选项,将保存加权非

标准化预测值。

精品文档

精品文档

3. Standard error,预测值标准误。

② Diagnostics 诊断值

1. Cook’s distance,Cook 距离。

2. Leverage values,非中心化 Leverage 值。

③ Residuals 残差

1. Unstsndardized,非标准化残差值,观测值与预测值之差。

2. Weighted,如果在主对话框中选择了WLS变量,选中该复选项,将保存加权非

标准化残差。

3. Standardized,标准化残差,又称Pearson残差。 4. Studentized,学生化残差。

5. Deleted,剔除残差,自变量值与校正预测值之差。

④ Save to New File 保存协方差矩阵

选中”Coefficient statistics”项,将参数协方差矩阵保存到一个新文件中。单击“File”按钮,打开相应的对话框将文件保存。

9)选择输出项

在主对话框中单击“Options”按钮,打开“Options”输出设置对话框,见图5-12。

图5-12 “Options”输出设置对话框

① Estimated Marginal Means 估测边际均值设置

?

在“Factor(s) and Factor Interactions”框中列出“Model”对话框中指定的效应项,在该框中选定因素变量的各种效应项,

精品文档

精品文档

单击右拉按钮就将其复制到“Display Means for”框中。选择主效应,则产生估计的边际均值表;选择二维交互效应产生的估计

边际均值表实际上是典型的单元格均值表。选择三维交互效应也是单元格均值表。

?

在“Display Means for”框中有主效应时激活此框下面的“Compare main effects”复选项,对主效应的边际均值进行组间的配 对比较。

? Confidence interval adjustment参数框,进行多重组间比较。打开下拉菜单,共有三个选项:

LSD(none)、Bonferroni、Sidak.。

② 在“Display”栏中指定要求输出的统计量

Descriptive statistics项,输出描述统计量:观测量的均值、标准差和每个单元格中的观测量数。

Estimates of effect size项,效应量估计。选择此项,给出η2(eta-Square)值。它反应了每个效应与每个参数估计值可以归于 因素的总变异的大小。

Observed power复选项,选中此项给出在假设是基于观测值时各种检验假设的功效。计算功效的显著性水平,系统默认的临界值 是0.05。

Parameter estimates项。选择此项给出了各因素变量的模型参数估计、标准误、t检验的t值、显著性概率和95%的置信区间。

Contrast coefficient matrix项,显示协方差矩阵。

Homogeneity test项,方差齐次性检验。本例子选中该项。

Spread vs.level plot项,绘制观测量均值对标准差和观测量均值对方差的图形。 Residual plot项,绘制残差图。给出观测值、预测值散点图和观测量数目,观测量数目对标准化残差的散点图,加上正态和标准化 残差的正态概率图。

Lack of fit项,检查独立变量和非独立变量间的关系是否被充分描述。

General estimable function项,可以根据一般估计函数自定义假设检验。对比系数矩阵的行与一般估计函数是线性组合的。 ③ Significance level 框设置

改变“Confidence intervals”框内多重比较的显著性水平。

10) 提交执行

精品文档