高考考纲解读心得体会 下载本文

内容发布更新时间 : 2025/1/4 14:02:38星期一 下面是文章的全部内容请认真阅读。

2018高考数学大纲解读 “一不变”:核心考点不变 综述解读

2018年的高考中,核心考点仍然是函数与导数、三角函数、解三角形、数列、立体几何、解析几何、概率与统计、选考内容等。 在选择题或填空题中,集合、复数、程序框图、三视图、三角函数的图象和性质、线性规划、平面向量、数列的概念与性质、圆锥曲线的简单几何性质、解三角形、导数与不等式的结合、函数的性质仍然是高频考点。在解答题中,除数列和三角函数轮流命题外,立体几何、概率与统计、解析几何、函数导数与不等式、选考内容仍然是必考内容。 备考思路

1.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”;

2.选择题与填空题中出现不等式的题目时,优选特殊值法; 3.求参数的取值范围时,应该建立关于参数的等式或不等式,用函数的定义域或值域或解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

4.恒成立问题或它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复、不遗漏;

5.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择根与系数的关系求解,使用根与系数的关系时必须先考虑是否为二次方程及根的判别式;

6.求椭圆或双曲线的离心率,建立关于a、b、c之间的关系等式即可;

7.求三角函数的周期、单调区间或最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;

8.数列的题目与和有关,优选作差的方法;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;

9.导数的常规题目一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或者前一问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

10.概率与统计的解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略; “二变”:数学文化解读

教育部考试中心函件《关于2018年普通高考考试大纲修订内容的通知》要求“增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用。比如,在数学中增加数学文化的内容”高考数学文化与高中知识点结合内容举例:

一、数学文化与算法 二、数学文化与数列 三、数学文化与概率统计 四、数学文化与立体几何 五、数学文化与三角函数 六、数学文化与推理与证明 备考策略

弘扬中国传统文化,尤其是数学文化,是2018年高考数学命题的新的“考向”

增加对数学文化的要求,是践行社会主义核心价值观、弘扬中国优秀传统文化的具体体现,通过对这些问题的解答使考生深刻认识到中华民族优秀传统的博大精深和源远流长。相信2018年在数学命题中,仍会适当增加对中国传统文化进行考查的内容,如将四大发明、勾股定理等所代表的中国古代科技文明作为试题背景材料,遵循继承、弘扬、创新的发展路径,注重传统文化在现实中的创造性转化和创新发展,体现中国传统科技文化对人类发展和社会进步的贡献,从而实现考试的社会意义和现实目的。 “三变”:选考模块的调整

在考试内容与范围方面,删去了选修4-1里的“几何证明选讲”。删去的理由是几何证明选讲考查的是初中平面几何的知识,作为基础知识,可以在立体几何、解析几何知识中考查,不需要再单独设置专题考查,同时在以前的教学大纲和2017年修订的课程标准中都不包含。