内容发布更新时间 : 2024/12/22 19:49:25星期一 下面是文章的全部内容请认真阅读。
第一章 概率论的基本概念习题答案
. 1. 解:???(正,正),(正,反),(反,正),(反,反)? A??(正,正),(正,反)?;B??(正,正),(反,反)?
C??(正,正),(正,反),(反,正)?
2. 解:???(1,1),(1,2),?,(1,6),(2,1),(2,2),?,(2,6),?,(6,1),(6,2),?,(6,6)?; AB??(1,1),(1,3),(2,2),(3,1)?;
A?B??(1,1),(1,3),(1,5),?,(6,2),(6,4),(6,6),(1,2),(2,1)?;
AC??;BC??(1,1),(2,2)?;
A?B?C?D??(1,5),(2,4),(2,6),(4,2),(4,6),(5,1),(6,2),(6,4)?
3. 解:(1)ABC; (2)ABC; (3)ABC?ABC?ABC;
(4)ABC?ABC?ABC; (6)ABC;
(5)A?B?C;
(7)ABC?ABC?ABC?ABC或AB?AC?BC
(8)ABC; (9)A?B?C
4.解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。
5.
解:如图:
ACABCABCABC
ABCABCA?B?C?ABC?ABC?ABC?ABC?ABC?ABC?ABC;ABCBAB?C?ABC?C;?BA?ABCABCABCB?AC?ABC?ABC?ABC?BC?ABC
6. 解:不一定成立。例如:A??3,4,5?,B??3?,C??4,5?, 那么,A?C?B?C,但A?B。
7. 解:不一定成立。 例如:A??3,4,5?,B??4,5,6?,C??6,7?, 那么A?(B?C)??3?,但是(A?B)?C??3,6,7?。
8. 解:
(1)
P(BA)?P(B?AB)?P(B)?P(AB)?P(BA)?P(B?A)?P(B)?P(A)?12;
16; (2)
113P(BA)?P(B?AB)?P(B)?P(AB)???288。 (3)
9. 解:
1??P(A)?P(B)?P(C)?P(AB)?P(AC)?P(BC)?P(ABC)?11?111?3?1?????0???0??1616?8 ?44410.
解:
P(ABC)?PA?B?C?1?P(A?B?C)=
??1?1?112?2?28?P(D)?P(E)??3?3?327;3?3?327;
11113!2P(F)????P(G)??2727279;3?3?39;
18P(H)?1?P(F)?1??99. P(A)?P(B)?P(C)?11. 解:一次拿3件:
211221C98C2C2C98?C2C98P?3?0.0588P??0.05943CC100100(1); (2);
每次拿一件,取后放回,拿3次:
2?982983P??3?0.0576P?1??0.058833100100(1); (2);
每次拿一件,取后不放回,拿3次:
2?98?97?3?0.0588100?99?98(1);
98?97?96P?1??0.0594100?99?98(2)
P?
12.
解:
3C87P(A1)?3?C1015;
3312C9?C8C81414P(A2)??P(A)?1??23315或15 C10C1013.
5P93?4P8241P??490 P10解:14.
解:
116P?1?6??0.4112(1);
14C12C6112P???0.0073612(3)
4C6?112P???0.00061612(2);
15.
解:
131213111C4C13?C4C13C39C4C13C13C13P????0.602P?1??0.60233C52C52或
16.
解:
令Ai?“取到的是i等品”,i?1,2,3
P(A1A3)? 17.
P(A1A3)P(A1)0.62???P(A3)P(A3)0.93。
解:
令A?“两件中至少有一件不合格”,B?“两件都不合格”
P(AB)P(B)P(B|A)???P(A)1?P(A)2C42C102C101?C62?15
18.
则P(A)?0.92,P(B)?0.93,P(B|A)?0.85 (1)P(AB)?P(B?AB)?P(B)?P(AB)
解:令A?“系统(Ⅰ)有效” ,B?“系统(Ⅱ)有效”
?P(B)?P(A)P(B|A)?0.93?(1?0.92)?0.85?0.862 (2)P(BA)?P(A?AB)?P(A)?P(AB)?0.92?0.862?0.058
P(A|B)?(3)
P(AB)0.058???0.8286P(B)1?0.93
19.
证:
?:?A与B独立,?A与B也独立。
?P(B|A)?P(B),P(B|A)?P(B) ?P(B|A)?P(B|A)
?: ?0?P(A)?1?0?P(A)?1