2015年全国大学生数学建模比赛A题一等奖论文 下载本文

内容发布更新时间 : 2025/1/7 12:25:16星期一 下面是文章的全部内容请认真阅读。

太阳影子定位问题

摘要

目前,如何确定视频的拍摄地点和拍摄日期是计算机视觉的热点研究问题,是视频数据分析的重要方面,有重要的研究意义。本文通过建立数学模型,给出了通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的方法。

对于问题一,建立空间三维直角坐标系和球面坐标系对直杆投影和地球进行数学抽象,引入地方时、北京时间、太阳赤纬、杆长、太阳高度角等五个参数,建立了太阳光下物体影子的长度变化综合模型。求解过程中,利用问题所给的数据,得到太阳赤纬等变量,将太阳赤纬等参量代入模型,求得了北京地区的9:00至15:00的影子长度变化曲线,当12:09时,影子长度最短;并分析出影长随这些参数的变化规律,利用控制变量法思想,总结了五个参数与影子长度的关系。最后进行模型检验,将该模型运用于东京、西藏两地,得到了这两座城市的影长变化规律曲线,发现变化规律符合实际两地实际情况。

对于问题二,为了消除不同直角坐标系带来的影响,将实际坐标转换为二次曲线的极坐标,建立了极坐标下基于多层优化搜索算法的空间匹配优化模型。求解时,先将未知点的直角坐标系的点转换为极坐标,然后设计了多层优化搜索算法,通过多次不同精度的搜索,最后得出实际观测点的经纬度为东经E115?北纬N25?。同时对模型进行验证,实地测量了现居住地的某个时间段的值,通过模型二来求解出现居住地的经纬度,分析了误差产生的原因:大气层的折射和拟合误差。

对于问题三,将极坐标转换后的基本模型转换为优化模型,建立了基于遗传算法的时空匹配优化模型。将目标函数作为个体的适应度函数,将经度纬度及日期作为待求解变量,用遗传算法进行求解,得到可能的经度纬度及其日期:北纬20度,东经114度,5月21日;北纬20度,东经114度,7月24日;东经94.5度,北纬33.8度,6月19日。最后,将遗传算法与多层优化搜索算法进行对比分析,得出遗传算法的求解效率和求解精度均优于多层次搜索算法。

对于问题四,首先将视频材料以1min为间隔进行采样得到41帧(静态图片),将这些静止图片先利用matlab进行处理,后进行阀值归一化处理,得到这些帧的灰度值矩阵。在图片上建立参考模型,获得影子端点的参考位置。利用投影系统和模型二,建立了基于图形处理的视频拍摄地点搜索模型。利用模型二中多层搜索算法,求得满足精度的最优地点。最优的地点是:东经119,北纬48.7,在内蒙古的呼伦贝尔市。同时假设日期是未知量,将模型四与模型三相结合,得到了可能的地点和时间,并分析了可能出现误差的原因,最后回答了当视频日期未知,也可以确定其位置和日期。 最后,给出了模型的优缺点和改进方案。

关键词:极坐标化,多层优化搜索算法,遗传算法,图像处理,MATLAB

全国大学生数学建模竞赛一等奖论文

1. 问题重述

1.1问题背景

随着现代科技的发展,日常生活中摄像机的应用越来越普遍。无论是个人家庭还是组织单位,都通过摄像机来录制各种视频以分享信息,例如实时视频监控、记录自然景观、观测气象信息等。而通过视频来确定拍摄地点的地理位置信息是目前计算机视觉领域的热点研究问题之一。一个视频的地理位置能够提供当地气候、平均温度、平均降雨量、植物索引、地表概况、海拔高度和人口密度等大量背景信息[1]。因此从视频中确定地理位置是一项有很大潜力应用空间的技术。

1.2问题描述

视频数据分析是视频处理过程中的重要环节,而如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面。太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。

试建立数学模型讨论下列问题:

1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用所建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场3米高的直杆的太阳影子长度的变化曲线。

2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。将模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。

3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。将模型分别应用于附件2和附件3的影子顶点坐标数据,给出若干个可能的地点与日期。

4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直杆的高度为2米。请建立确定视频拍摄地点的数学模型,并应用此模型给出若干个可能的拍摄地点。如果拍摄日期未知,能否根据视频确定出拍摄地点与日期?

2. 问题分析

2.1问题一分析

问题一要求分析投影长度随各参数的变化规律,建立影子长度变化的数学模型。首先对直杆建立空间三维坐标系,将地球简化成规则球体建立球面坐标系。在这两个坐标系中,通过几何证明,运用向量知识可分析出影响影子长度的各种参数,得出地球上某日白天某时刻影子顶端在地平面上的具体位置,由此可以给出影子长度的变化规律。

2.2问题二分析

问题二要求根据某固定直杆在水平地面上的太阳影子顶点坐标数据及日期数据,建立数学模型确定直杆所处的地点。与第一问有相似之处,但分析附件所给数据,发现附

全国大学生数学建模竞赛一等奖论文

件中只给出x、y坐标值,而并没有给出xy轴的准确方向,所以考虑将直角坐标转换成极坐标,来消除由于不同坐标系选取所造成的影响。 2.3问题三分析

问题三与问题二有相似处,区别是第三问附件没有提供日期,需要根据直杆影子端点坐标确定直杆所在地点的经纬度和日期。具体的日期可以由太阳直射点纬度来确定,而根据问题二中的模型,xy坐标与太阳直射点纬度有关。如果继续用第二问的模型来求解,需要不断改变太阳直射点纬度来拟合极坐标方程,这样做算法复杂度会很大。所以考虑对问题二模型进行修改,不采用拟合,而直接建立与待求点经纬度以及日期有关的目标函数,通过约束经纬度范围来缩小待求点的可行域,从而简化算法复杂度。

2.4问题四分析

问题四中,直接以视频的方式给出了固定杆长的距离变化规律。将图片形式的影长变化规律以坐标的形式进行转换,转换为现实的坐标形式。这样就可以利用问题二的模型,整合现有的算法,求出拍摄地点。

3. 模型假设与符号系统

3.1模型的假设

(1)假设地球为一个规则的球体。

(2)由于日地距离远大于地球半径,所以假设太阳光线为平行光。 (3)假设地球上某地的水平地面是地球球面上过该地的切面。 (4)假设不考虑太阳光线穿过大气层时所发生的折射。 (5)假设一天中太阳直射点的纬度不变。

(6)假设不考虑太阳的视面角、高山阻挡、海拔高度等因素的影响。 (7)假设不考虑阴天没有阳光的情况。

3.2符号系统

问题一符号系统

符号 意义 单位

直杆所在地纬度值 度 ?

? 太阳直射点的纬度 度

A、B两地经度差 度 ?

? 太阳光线与直杆的夹角 度

直杆长度 米 h

直杆影长 米 L

t 地方时 时 t0 北京时间 时

全国大学生数学建模竞赛一等奖论文