内容发布更新时间 : 2024/11/7 22:48:20星期一 下面是文章的全部内容请认真阅读。
。
图7-23 修正的模型四
图7-24 修正的模型五
下面考虑通过修正指数对模型修正,e12与e13的MI值最大,为26.932,表明如果增加a12与a13之间的残差相关的路径,则模型的卡方值会减小较多。从实际考虑,员工对顾客的态度与员工给顾客结帐的速度,实际上也确实存在相关,设想,对顾客而言,超市员工结帐速度很慢本来就是一种对顾客态度不好的方面;反之,则相反。
-可编辑修改-
。
因此考虑增加e12与e13的相关性路径。(这里的分析不考虑潜变量因子可测指标的更改,理由是我们在设计问卷的题目的信度很好,而且题目本身的设计也不允许这样做,以下同。)
重新估计模型,重新寻找MI值较大的,e7与e8的MI值较大,为26.230,(虽然e3与e6的MI值等于26.746,但它们不属于同一个潜变量因子,因此不能考虑增加相关性路径,以下同)表明如果增加a7与a8之间的残差相关的路径,则模型的卡方值会减小较多。这也是员工对顾客的态度与员工给顾客结帐的速度之间存在相关,因此考虑增加e7与e8的相关性路径。
重新估计模型,重新寻找MI值较大的,e17与e18的MI值较大,为13.991,表明如果增加a17与a18之间的残差相关的路径,则模型的卡方值会减小较多。实际上消费前的满意度和与心中理想超市比较的满意度之间显然存在相关,因此考虑增加e17与e18的相关性路径。
重新估计模型,重新寻找MI值较大的,e2与e3的MI值较大,为11.088,表明如果增加a2与a3之间的残差相关的路径,则模型的卡方值会减小较多。实际上超市形象和超市品牌知名度之间显然存在相关,因此考虑增加e2与e3的相关性路径。
重新估计模型,重新寻找MI值较大的,e10与e12的MI值较大,为5.222,表明如果增加a10与a12之间的残差相关的路径,则模型的卡方值会减小较多。但实际上超市的食品保险&日用品丰富性与员工态度之间显然不存在相关,因此不考虑增加e10与e12的相关性路径。另外,从剩下的变量之间MI值没有可以做处理的变量对了,因此考虑MI值修正后的模型如图7-25。
-可编辑修改-
。
图7-25 修正的模型六
根据上面提出的如图7-25所示的模型,在Amos中运用极大似然估计运行的部分结果如表7-15。 表7-15 常用拟合指数计算结果 拟合指数 结果
卡方值(自由度) 281.9 (125)
CFI 0.972
NFI 0.951
IFI 0.972
RMSEA 0.056
AIC 373.877
BCC 378.465
EVCI 0.935
从表7-14和表7-15可以看出,卡方值减小了很多,并且各拟合指数都得到了较大的改善。该模型的各个参数在0.01的水平下都仍然是显著的,各方程的对应的测定系数增大了。下面考虑根据Pairwise Parameter Comparisons来判断对待估计参数的设定,即判断哪些结构方程之间的系数没有显著差异,哪些测量方程的系数之间没有显著差异,哪些结构方程的随机项的方差之间没有显著差异,哪些测量方程的随机项的方差之间的之间没有显著差异,对没有显著差异的相应参数估计设定为相等,直到最后所有相应的critical ratio都大于2为止。通过点击工具栏中的
来查看模型输出详细结果中的Pairwise Parameter Comparison项可以查看临界比率
(Critical Ratio)结果,其中par_1到par_46代表模型中46个待估参数,其含义在模型参数估计结果表(如表7-5,7-6)中标识。根据CR值的大小22,可以判断两个模型参数的数值间是否存在显著性差异。如果经检验发现
22一般绝对值小于
2认为没有显著差异。
-可编辑修改-
。
参数值间不存在显著性差异,则可以考虑模型估计时限定两个参数相等。如果是某两个参数没有显著差异,并且根据经验也是如此,则可在相应的认为相等的参数对应的路径或残差变量上点击右键选择Object Properties,然后出现如图7-11的选项卡,选择parameters项,如
图7-26 对应因果路径
图7-27 对应残差变量
-可编辑修改-
。
图7-28 对应相关系数路径
图7-26,图7-27,图7-28。然后在Regression weight23,variance24,covariane25输入相同的英文名称即可。比如从图7-25修正的模型六输出的临界比率结果中发现绝对值最小的是par_44和par_45对应的-0.021,远远
图7-29 设置e22和e24的方差相等
23对应因果路径。 24对应残差变量。 25对应相关系数路径。
-可编辑修改-