2010-2013山东高考数学试题分析报告 下载本文

内容发布更新时间 : 2024/12/24 4:10:55星期一 下面是文章的全部内容请认真阅读。

2010年山东高考数学试卷评析 -------------连续和谐 稳定发展

2010年普通高考山东数学卷,继承了以往山东试卷的特点。试题在具有了连续性和稳定性的基础上,更具有了山东特色,适合山东中学教学实际,对山东省平稳推进素质教育起到很好的导向作用。不仅如此,试卷还体现新课程改革中对情感、态度、价值观和探究能力考查的理念,丰富了数学试卷的内涵品质,在有利于高校选拔人才的同时,具备了一定的评价功能,同时还有利于课程改革的纵深推进。

试卷形式保持稳定,主要体现在大纲理念、试卷结构、题目数量以及题型等方面与2009年基本相同,保证了试题年度间的连续稳定。另外在全国2010年全面推进新课程标准的大背景下,作为首批进入课程改革的实验省,2010年的试卷在保持“稳定”的基调下,进一步加深对课程改革的渗透,既体现了知识运用的灵活性和创造性,又兼顾了试题的连续和谐与稳定发展。 一、遵循考试说明,注重基础

试卷紧扣我省的考试说明,体现了新课程理念,贴近教学实际,从考生熟悉的基础知识入手,无论是必修内容,还是选修内容,许多试题都属于常规题。部分题目“源于教材,高于教材”,做足教材文章。如文、理科的选择、填空以及解答题的入手题(17)和(18)题,均侧重于中学数学学科的基础知识和基本技能的考查,这对正确地引导中学数学教学都起到良好的促进作用。 二、考查全面,注重知识交汇点

2010年山东省高考数学文理两科试卷全面考查了《2010年普通高等学校招生全国统一考试山东卷考试说明》中要求的内容,具有较为合理的覆盖面。集合、复数、常用逻辑、线性规划、向量、算法与框图、排列组合等内容在选择、填空题中得到了有效的考查;三角函数、概率统计、立体几何、解析几何、函数与导数、数列等主干知识在解答题中得到考查,构成试卷的主体内容。同时,文、理科试卷都注重了考查知识间的内在联系,在知识点的交汇处设计试题,如理科第(20)题,将概率知识和实际背景相结合;如文科第(21)题和理科第(22)题将函数、导数、方程和不等式的知识融为一体。 三、注重能力立意,体现文理差异

2010年山东高考数学文理两科试卷突出以能力立意,强化对“过程和方法”的考查;综合地考查了运算求解能力,如理科第(15)、(17)题,文科第(16)、(18)题;考查了空间想象能力,如理科第(19)题、文科第(20)题;考查了推理论证能力,如理科第(19)题、文科第(20)题;考查了抽象概括能力和创新探究能力,如理科第(12)、(21)、(22)题,文科第(10)、(12)、(22)题。试卷还充分考虑到文、理考生的差异,在难度要求、设问方式、知识点的考查等方面都对文理科学生的差异提出不同的考查要求,符合当前的中学数学教学以及学生的实际学习状况。

四、重视创新意识,凸显新课程理念

2010年高考山东数学文理两科试卷,非常重视对考生的创新意识的考查,注重对未来继续学习的能力考查,如文科第(6)题、理科第(12)题以及文科第(22)题、理科第(21)题等采用了开放性的设问方式和对新定义的阅读和理

1

解以及应用。试卷还凸显了新课标的理念,对新课程中新增知识和传统内容进行了有机结合,考查也更加科学和深化。如算法与框图、向量、均数和方差、概率和分布列,理科的绝对值不等式等都充分体现了我省支持课程改革的命题取向。两份试卷强调对思想方法的考查,尤其是对图形、图表语言的运用,数形结合、函数与方程、分类与整合等数学思想方法都作了重点的考查。

总之,2010年山东省高考数学文、理两份试卷,均具有较高的信度、效度和有效的区分度,达到了 “考基础、考能力、考素质、考潜能”的考试目标。

2011年山东数学高考试题评析

-----------彰显十大突破,再谱创新华章

2011 年高考数学山东卷在保持稳定、充分体现新课改理念的基础上又呈现出诸多亮点,

彰显十大突破。

突破一:对统计的考查

今年的统计试题,考查了回归分析,不仅背景新颖、公平、贴近生活实际,而且设计科学,表述规范。该题突破了仅对公式记忆的考查模式,考查了回归分析的实际应用,既注重了中学教学实际,又体现了统计学的基本思想和新课标要求,对今后各地的命题起到很好的示范作用。

突破二:对框图的考查

今年的框图试题考查了框图的三种基本逻辑结构,而且背景新颖。其背景是《孙子算经》中的“物不知数”题,也叫“韩信点兵”。该题以框图为载体,以传统名题为素材,背景深刻。将古老的数学文化,以考题的形式呈现出来,展示了中国古代数学的瑰宝,也创造性地揭示了中国古代数学在算法上的成就。该题的形式和内涵不仅充分体现了算法的思想,也有着极高的文化价值,会激发学生的民族自信心和自豪感,将会成为框图问题设计中的一个经典案例。

突破三:对三视图的考查

三视图的考查多采取给出三视图的形状、尺寸后,求空间几何体的表面积和体积的方式。今年山东卷考题的设计,仅给出了主视图、俯视图,让考生去想象几何体的可能形状。这种命题方式新颖独特,更为可贵的是主视图、俯视图都是我们熟悉的矩形,而几何体也列出了我们最为熟悉的三棱柱、四棱柱、圆柱。尽管题目信息量大,但是不偏、不怪、不刁钻,不会对考生的心理造成任何冲击。该题充分体现了新课程对学生空间想象能力的要求,遵循了从局部到整体,从抽象到具体的原则。该题是今年所有三视图考题中的扛鼎之作。 突破四:创新题型的设计

文理( 12 )题背景基本一致,难度略有差异。该题目以平面向量的知识为载体,考查了学生独立获取数学知识的能力及进入高校发展的潜力,也体现了命题人的数学功力。是近几年创新题型中的力作,也是山东卷创新题型的又一重大突破。 突破五:对零点的考查

文理( 16 )题中的函数是对数函数和一次函数的组合,含有两个参变量。解答以数形结合为切入点,融入了估算的处理方法。该题体现了多方面知识的交汇,体现了对数学素材的统一把握,对数学基础知识的考查达到了必要的深度,是零点问题中的佼佼者,也是客观题目中零点考查方式的重大突破。 突破六:数列问题情景的设置

文理( 20 )题均为数列题,情景一致。该题以列表的形式简洁明了地给出了等比数列

2

的前三项,极易让考生把握,巧妙地穿插进了分类整合的思想。该种情景具有科学依据,因为数列是特殊的函数,函数可以借助解析法、列表法、图象法来表示。此外,从该情景中还可以感觉到行列式的魅力。所以该题目情景的设置极具创新精神,又不失科学依据,具有极深的数学底蕴,充分体现了数学语言文化的魅力。 突破七:应用题背景设置

今年的文理( 21 )题为应用题,生活中有较多的实例。题目涉及到球和圆柱构成的组合体的表面积和体积,贴近学生的学习实际,背景公平,难度适中,无任何牵强附会之嫌。由于教材中也出现了多个以体积为平台,考查导数应用的实际问题,因此该问题的设计充分体现了“源于教材而高于教材”的理念,对中学教学将起到积极的引导作用。该题的设计,符合实际情景,考查了导数的应用与分类整合的思想,以及建模能力和应用意识。该题背景和数学知识相得益彰,体现了命题者对中学数学教学实际的充分把握和自身的较高的数学素养,也是于平淡处挖掘新意的典范。 突破八:解析几何题目的设计

2011 年文理试卷均以解析几何题目为压轴题。椭圆作为传统核心内容和考查重点,常考常新。今年尽管对解析几何的考查要求没有改变,但在考查方式上实现了较大突破。 1. 低而不俗。文理尽管都以椭圆为背景,难度不同,但第一问均以平方和的形式设问,分别求定值和极小值,入口较宽,且起点低。但是没有落入司空见惯的求方程、求基本量的俗套,独具匠心。

2. 通而不僵。定值、定点、存在性都是常见设问,通性通法均可处理,但本题于平淡处见精神,靠已有的基础知识,基本方法,基本思想,和数学学习经验,经过研究分析才能解答,是真正的好题。对只依赖练习册、死记题型、死套模式,思维僵化的考生,产生了较大的挑战。

3. 丰而不散。本题内涵丰富 , 突出了对解析法本质的考查,与平面几何结合紧密;关注了考生的思维能力,运算能力,图形分析和处理能力 . 但并不松散,各方面融合巧妙,形神兼备,天衣无缝,是命题者神来之笔。 突破九:文理差别的处理

对文理科考查内容的不同要求在试卷中的处理,也是今年试卷的一大突破,以数列问题为例,在第二问中,均在通项的基础上求和,但在求和的方法、计算量的大小和难易的程度,都充分考虑到文理考生的实际状况,体现了对广大考生的人文关怀。对比 2010 年的数列试题对文理要求完全一致,是一个重大突破。 突破十:对不同版本教材的处理 命题的指导思想是以《课程标准》和《考试说明》为依据,不拘泥于某一版本的教科书。不同版本的教材在内容的设置、定义的叙述、公式的形式、数学术语给出等方面,都存在差别,但 2011 年的试卷,完美地处理了这种差异,对使用不同版本教材的考生都很公平,充分体现了考题与教材的完美结合。

总之,通过纵横比较, 2011 年的山东数学试卷在以上十个方面实现了较大突破,有利于课改,有利于中学教学,有利于高校选拔人才,必将对山东省的素质教育产生积极的推动作用。

2012年高考山东数学试卷评析 -------------知识和能力并举,传统与创新齐飞

纵观2012年普通高考山东卷数学试题,在秉承山东近几年自行命题形成的

3

独立风格的同时,出现了诸多创新和突破。试卷在全面考查中学数学基本知识的同时,更加注重了对数学能力、数学思想和方法以及数学素养的考查,从基本结构、试题难度、区分度、试题的广度和深度等方面都称得上是一份出色的试卷。

一、注重稳定,强调基础,秉承传统,回归自然

试卷主体结构稳定,试题科学规范,表述简洁严谨,面向教学实际,回归教材,让考生能在规定时间内最大限度地发挥出自己的真实水平。

1、

考查全面,重点突出,巧妙地设计了知识考查的广度和深度

2012年数学试卷巧妙地处理了试卷命制中广度和深度的矛盾,知识点覆盖全面且重点突出。全卷涵盖了数学课程标准中的大部分知识点,试卷针对性强,注重考查通性通法,有效检测了考生对知识掌握的程度。在全面考查的同时,对支撑高中数学学科体系的主干内容也做到了重点考查,对于考纲中要求较高的三角函数、立体几何、概率统计、数列、函数和导数的应用、圆锥曲线等主干知识均以解答题形式出现,并都达到了一定的考查深度。

2、

注重高考选拔功能,科学控制试卷难度和区分度

各种题型都按由易到难的顺序排列,从源于教材的基础题目开始,强调对基本知识和基本技能的考查,逐渐进入到区分度较高的题目,强调对思维水平的考查,基础题和难度较大的题的数量比例适当,使得考生的思维水平可以循序渐进,体现了命题者对试卷结构的科学控制和对广大考生的人文关怀。

3、

重视知识网络的交汇,强化对知识和能力的综合考查

试题强化了对考生所学数学知识和能力的综合考查,对各考点进行了综合设计,以考查考生的数学思想和数学素养为目的,知识点纵横交错,对知识和能力进行了网络式布题。例如理科第12题结合函数图象的性质、数形结合思想以及分类讨论思想进行了考查,文理科的20题对等差数列和等比数列中的通项公式以及求和公式进行综合考查,文科第21题对圆锥曲线、分类讨论思想以及转化与化归思想都进行了考查,文理两科的第21题虽然都是以圆锥曲线为背景,但代数的方法和思想贯穿始终,定量地刻画了圆锥曲线的本质属性,在考查基本知识的同时也考查了“用代数方法研究几何性质”这一解析几何的核心思想.

二、突出能力,强化思想,敢于创新,重视应用

4

试题突出能力立意,强调对数学基本能力、基本思想的考查,把考纲中要求的各种知识认知目标和能力目标统一处理,充分吸收了新课改的实践成果,大胆创新,形式新颖。

1、

积极探索,大胆创新,试题设计和试卷分值分配方面进行了调整

首先,对试卷分值结构进行了调整。文理两科均把解答题第21题和第22题的分值调整为13分。这样的调整淡化了以往第22题压轴的概念,可在一定程度上减轻考生对最后一题的恐惧心理,缓解考试中的紧张情绪,始终能以平和的心态面对考卷。另外,文理两科的最后三道试题的最后一问都有一定的难度和思维量,梯度设计科学、合理,达到了高考试卷难度控制的理想状态。这次创新和调整也给中学数学教学和素质教育的落实提出了新的要求,将有效地避免中学教育的某些环节出现公式化、模式化。

其次,在题目的设计方面,也显示出诸多亮点和创新,仅举几例加以说明。 (1)文理科第12题,以函数图象和性质为依托,巧妙结合了函数图象的公共点、函数图象的对称性、数形结合的思想、分类讨论的思想,对考生的思维水平要求较高,体现了较高的区分度。文理科第16题,以实际生活中的旋轮线作为载体,加以合理的数学抽象,系统考查了向量的坐标和运算,试题形式新颖,生动活泼,同时作为填空题的最后一题,也有着一定的难度和较好的区分度。选择、填空题的这两道收官题,为数学思维水平高的考生留足了思维驰骋的空间。 (2)今年的文理两科的数列题目,以不同形式考查等差数列在特殊长度的区间中的项数形成的数列,进一步挖掘了等差数列和等比数列的内在联系,从本质上挖掘了二者的内在统一性。试题源于教材,而又高于教材,有利于考查考生对数列本质思想的深刻把握。

(3)函数及其导数的应用是历年高考重点考查的内容。今年的数学试卷勇于创新,把函数的单调性、图象和性质、不等式的证明以及导数的应用有机地结合在一起,试题设计较好地考查了考生的数学素养和数学洞察力,具有较高的区分度,使得不同水平的考生在此各显身手,获得与自己的真实能力和水平相对应的成绩。题目避免了常规题目的俗套设计和多参数化的繁琐讨论,入口宽,梯度大,降低了运算量,提高了思维量,提高了试卷的整体质量。

2、

能力立意,强调思想,计算量和思维量设置恰当、相得益彰

5