贝叶斯网络模型代码 下载本文

内容发布更新时间 : 2025/1/9 0:56:32星期一 下面是文章的全部内容请认真阅读。

addpath(genpathKPM(pwd))

N = 4;

dag = zeros(N,N);

C = 1; S = 2; R = 3; W = 4; dag(C,[R S]) = 1; dag(R,W) = 1; dag(S,W)=1;

discrete_nodes = 1:N; node_sizes = 2*ones(1,N);

bnet = mk_bnet(dag, node_sizes, 'discrete', discrete_nodes); onodes = [];

bnet = mk_bnet(dag, node_sizes, 'discrete', discrete_nodes, 'observed', onodes); bnet = mk_bnet(dag, node_sizes, 'names', {'cloudy','S','R','W'}, 'discrete', 1:4); C = bnet.names('cloudy'); % bnet.names是一个关联数组; bnet.CPD{C} = tabular_CPD(bnet, C, [0.5 0.5]); CPT = zeros(2,2,2); CPT(1,1,1) = 1.0; CPT(2,1,1) = 0.1;

CPT = reshape([1 0.1 0.1 0.01 0 0.9 0.9 0.99], [2 2 2]);

bnet.CPD{W} = tabular_CPD(bnet, W, 'CPT', [1 0.1 0.1 0.01 0 0.9 0.9 0.99]); bnet.CPD{C} = tabular_CPD(bnet, C, [0.5 0.5]);

bnet.CPD{R} = tabular_CPD(bnet, R, [0.8 0.2 0.2 0.8]); bnet.CPD{S} = tabular_CPD(bnet, S, [0.5 0.9 0.5 0.1]);

bnet.CPD{W} = tabular_CPD(bnet, W, [1 0.1 0.1 0.01 0 0.9 0.9 0.99]); figure

draw_graph(dag)