用lingo编程解决运输问题大全 - 图文 下载本文

内容发布更新时间 : 2024/11/17 14:25:22星期一 下面是文章的全部内容请认真阅读。

LINGO是用来求解线性和非线性优化问题的简易工具。LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。

当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口:

外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO的默认模型窗口,建立的模型都都要在该窗口内编码实现。下面举两个例子。

例1.1 如何在LINGO中求解如下的LP问题:

页 第1

min2x1?3x2s.t.x1?x2?350x1?1002x1?x2?600x1,x2?0

在模型窗口中输入如下代码:

min=2*x1+3*x2; x1+x2>=350; x1>=100;

2*x1+x2<=600;

然后点击工具条上的按钮 即可。

例1.2 使用LINGO软件计算6个发点8个收点的最小费用运输问题。产销单位运价如下表。

销地 产地 A1 A2 A3 A4 A5 A6 销量 B1 6 4 5 7 2 5 35 B2 2 9 2 6 3 5 37 B3 6 5 1 7 9 2 22 B4 7 3 9 3 5 2 32 B5 4 8 7 9 7 8 41 B6 2 5 4 2 2 1 32 B7 5 8 3 7 6 4 43 B8 9 2 3 1 5 3 38 产量 60 55 51 43 41 52

页 第2

使用LINGO软件,编制程序如下:

model:

!6发点8收点运输问题; sets:

warehouses/wh1..wh6/: capacity; vendors/v1..v8/: demand;

links(warehouses,vendors): cost, volume; endsets !目标函数;

min=@sum(links: cost*volume); !需求约束;

@for(vendors(J):

@sum(warehouses(I): volume(I,J))=demand(J)); !产量约束;

@for(warehouses(I): @sum(vendors(J):

volume(I,J))<=capacity(I)); !这里是数据; data:

capacity=60 55 51 43 41 52;

demand=35 37 22 32 41 32 43 38; cost=6 2 6 7 4 2 9 5 4 9 5 3 8 5 8 2 5 2 1 9 7 4 3 3 7 6 7 3 9 2 7 1

页 第3

2 3 9 5 7 2 6 5 5 5 2 2 8 1 4 3; enddata end

然后点击工具条上的按钮 即可。

为了能够使用LINGO的强大功能,接着第二节的学习。

§2 LINGO中的集

对实际问题建模的时候,总会遇到一群或多群相联系的对象,比如工厂、消费者群体、交通工具和雇工等等。LINGO允许把这些相联系的对象聚合成集(sets)。一旦把对象聚合成集,就可以利用集来最大限度的发挥LINGO建模语言的优势。

现在我们将深入介绍如何创建集,并用数据初始化集的属性。学完本节后,你对基于建模技术的集如何引入模型会有一个基本的理解。 2.1 为什么使用集

集是LINGO建模语言的基础,是程序设计最强有力的基本构件。借助于集,能够用一个单一的、长的、简明的复合公式表示一系列相似的约束,从而可以快速方便地表达规模较大的模型。 2.2 什么是集

集是一群相联系的对象,这些对象也称为集的成

页 第4

员。一个集可能是一系列产品、卡车或雇员。每个集成员可能有一个或多个与之有关联的特征,我们把这些特征称为属性。属性值可以预先给定,也可以是未知的,有待于LINGO求解。例如,产品集中的每个产品可以有一个价格属性;卡车集中的每辆卡车可以有一个牵引力属性;雇员集中的每位雇员可以有一个薪水属性,也可以有一个生日属性等等。

LINGO有两种类型的集:原始集(primitive set)和派生集(derived set)。

一个原始集是由一些最基本的对象组成的。 一个派生集是用一个或多个其它集来定义的,也就是说,它的成员来自于其它已存在的集。 2.3 模型的集部分

集部分是LINGO模型的一个可选部分。在LINGO模型中使用集之前,必须在集部分事先定义。集部分以关键字“sets:”开始,以“endsets”结束。一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分。一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须定义了它们。 2.3.1 定义原始集

为了定义一个原始集,必须详细声明:

页 第5