北师大版初中数学定理知识点汇总 下载本文

内容发布更新时间 : 2024/12/28 4:45:16星期一 下面是文章的全部内容请认真阅读。

北师大版初中数学定理知识点汇总[九年级(上册)

第一章 证明(二)

※等腰三角形的“三线合一”:顶角平分线、底边上的中线、底边上的高互相重合。 ※等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的

直角三角形,其中一个锐角等于30o,这它所对的直角边必然等于斜边的一半。 ※有一个角等于60o的等腰三角形是等边三角形。

※如果知道一个三角形为直角三角形首先要想的定理有: ①勾股定理:a?b?c(注意区分斜边与直角边)

②在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半 ③在直角三角形中,斜边上的中线等于斜边的一半(此定理将在第三章出现) ※垂直平分线是垂直于一条线段并且平分这条线段的直线。(注意着重号的意义) .........<直线与射线有垂线,但无垂直平分线>

※线段垂直平分线上的点到这一条线段两个端点距离相等。

※线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。 ※三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。(如图1所示,

A A AO=BO=CO)

F D

O O

C C

E B B 图2 图1

※角平分线上的点到角两边的距离相等。

※角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。 角平分线是到角的两边距离相等的所有点的集合。

※三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。 (如图2所示,OD=OE=OF)

第二章 一元二次方程 ※只含有一个未知数的整式方程,且都可以化为ax?bx?c?0(a、b、c为 常数,a≠0)的形式,这样的方程叫一元二次方程。 ......

※把ax?bx?c?0(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。

※解一元二次方程的方法:①配方法 <即将其变为(x?m)?0的形式>

222222?b?b2?4ac②公式法 x? (注意在找abc时须先把方程化为一般形式)

2a③分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。

(主要包括“提公因式”和“十字相乘”)

第1页

※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;

②将二次项系数化成1;

③把常数项移到方程的右边;

④两边加上一次项系数的一半的平方;

⑤把方程转化成(x?m)?0的形式;

⑥两边开方求其根。

2

※根与系数的关系:当b-4ac>0时,方程有两个不等的实数根;

2

当b-4ac=0时,方程有两个相等的实数根;

2

当b-4ac<0时,方程无实数根。

※如果一元二次方程ax?bx?c?0的两根分别为x1、x2,则有:

22x1?x2??bax1?x2?c。 a※一元二次方程的根与系数的关系的作用: (1)已知方程的一根,求另一根;

(2)不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:

①x1?x2?(x1?x2)?2x1x2 ②

22211x1?x2?? ③x1x2x1x2(x1?x2)2?(x1?x2)2?4x1x2

|x1?x2|?(x1?x2)2?4x1x2 ⑤

(|x1|?|x2|)2?(x1?x2)2?2x1x2?2|x1x2|

⑥x1?x2?(x1?x2)?3x1x2(x1?x2) ⑦其他能用x1?x2或x1x2表达的代数式。

(3)已知方程的两根x1、x2,可以构造一元二次方程:x?(x1?x2)x?x1x2?0 (4)已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程

2333x2?(x1?x2)x?x1x2?0 的根

※在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况

只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。 ※处理问题的过程可以进一步概括为: 问题分析求解?方程?解答 抽象检验第三章 证明(三)

※平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶.....

点连成的线段叫做它的对角线。 ...

第2页

※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。 ※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。

两组对边分别相等的四边形是平行四边形。 一组对边平行且相等的四边形是平行四边形。 两条对角线互相平分的四边形是平行四边形。

※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距

离相等。这个距离称为平行线之间的距离。

菱形的定义:一组邻边相等的平行四边形叫做菱形。

※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对

角线平分一组对角。

菱形是轴对称图形,每条对角线所在的直线都是对称轴。

※菱形的判别方法:一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形。 四条边都相等的四边形是菱形。

※矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。 ..※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称

图形,有两条对称轴)

※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。

对角线相等的平行四边形是矩形。 四个角都相等的四边形是矩形。

※推论:直角三角形斜边上的中线等于斜边的一半。 正方形的定义:一组邻边相等的矩形叫做正方形。

※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)

※正方形常用的判定:有一个内角是直角的菱形是正方形;

邻边相等的矩形是正方形; 对角线相等的菱形是正方形; 对角线互相垂直的矩形是正方形。

正方形、矩形、菱形和平行边形四者之间的关系(如图3所示): ※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。

第3页