内容发布更新时间 : 2025/1/5 19:52:56星期一 下面是文章的全部内容请认真阅读。
4.6本章习题全解
4.1 求下列函数的拉普拉斯变换(注意:t为变量,其它参数为常量)。 (1)
1a(1?e?at)u(t) (2)e?tu(t?2) (3)e?t?u(t)?u(t?2)? (4)1tss?s1e?s1?ss2e?2t?u(t) 1?2(5)
1????e??t?e??t?u(t) (6)te?tu(t) (7)
1t?e?3t?e?4t?u(t) (8)1t?1?e?at?u(t) (9)e?tsin2tu(t) (10)?sint?2cost?u(t)
(11)1sinatu(t) (12)t2tcos2tu(t) (13)
?1?cos?t?e??tu(t) (14)e?t?2u(t?2)
(15)sintu(t?2) (16)e??tsin(?t??)u(t)
(17)tcos33tu(t) (18)e?tax??t??a??
?t(19)e?atx??t??a?? (20)eax?at?u(t)
(21)e?(t?a)cos?0tu(t) (22)2?(t)?3e?7tu(t)
(23)2?(t?t0)?3?(t) (24)?t3?t2?t?1?u(t)
解:
(1)L[1a (1-e-at) u(t)] ?1s(s?a)
(2)L{e?tu(t?2)}?1s?1e?2(s?1) ?2(s?1)(3)
L{e?t[u(t)?u(t?2)]?1?es?1
(4)
L{1(sss1e?1t?s2e?s2ts)u(t)}?
1?s2(s?s1)(s?s2)(5)
L{1???(e??t?e??t)u(t)}?1(s??)(s??)
1
(6)
L{te?tu(t)}?1(s?1)2
(7) L{1(e?3t?e?4ts?3t)u(t)}??lns?4 (8)
L{1t(1?e?at)u(t)}??lnss?a (9)
L{e?tsin2tu(t)}?2(1?s)2?5 (10) L{(sint?2cost)u(t)}?2s?1s2?1 (11)
L{1tsinatu(t)}??s2?arctana (12)
L{t2cos2tu(t)}?2s(s2?12)(s2?4)3 (13)
L({1?cos?t)e??tu(t)}?1s??s???(s??)2?a2(14)
L{e?t?2e?2su(t?2)}?s?1
?2s(15)
L{sintu(t?2)}?es2?1(ssin2?cos2)
(16)
L{e?atsin(?t??)u(t)}??cos??(s?a)sin?(s?a)2??2
(17)
L{tcos33tu(t)}?1s2?9s2?814([s2?9)2?(s2?81)2] ?t(18)
L{eax(ta)}?aX(as?1) (L{x(t)}?X(s))
(19)
L{e?atx(ta)}?aX[a(s?a)]
(20)
L{e?tax(at)u(t)}?1aX(as?1a2) (21)
L{e-(a?t)coswas?10tu(t)}?e?(s?1)2?w2
0 2
(22) L{2?(t)?3e?7tu(t)}?2?3s?7 (23)
L{2?(t?t0)?3?(t)}?2e?t0s?3
(24)
L{(t3?t2?t?1)u(t)}?6s4?211s3?s2?s 4.2 已知L?x(t)??1s2?2s?5,求下列信号的拉普拉斯变换。
(1)
?t0x(?)d? (2)x(t)cos?0t
(3)x(2t?4) (4)
x(t)t (5)td2x(t)dt
解:(1)L?tX(s)???0x(?)d?????s?1s(s2?2s?5) (2)
L?x(t)cos?0t??12L??x(t)(ej?0t?e?j?0t)???12?L??x(t)ej?0t???L??x(t)e?j?0t????12?X(s?j?0)?X(s?j?0)??1?11?2??(s?j??2(s?j???2(s?j??0)20)?5(s?j?0)20)?5?(3)L?x(2t)??1?2X?s??2?? L?x(2t?4)??L?x(2(t?2))??1?s??2X?2s?2??e?112?s?2e?2s?2 ?s2?4s?20e?2s?2???2s2?5(4)
L??x(t)????t????1?1sX(s)ds??ss2?2s?5ds??s(s?1)2?4ds?1?
2arctans2???1arctanss422 3