通用版高考数学一轮复习2.4函数性质的综合问题检测文 下载本文

内容发布更新时间 : 2024/11/10 4:40:10星期一 下面是文章的全部内容请认真阅读。

课时跟踪检测(七) 函数性质的综合问题

A级——保大分专练

1.(2019·长春质检)下列函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A.y=e+e sin xC.y=

|x|

x-x B.y=ln(|x|+1) 1

D.y=x-

x解析:选D 选项A,B显然是偶函数,排除;选项C是奇函数,但在(0,+∞)上不是11

单调递增函数,不符合题意;选项D中,y=x-是奇函数,且y=x和y=-在(0, +

xx1

∞)上均为增函数,故y=x-在(0,+∞)上为增函数,所以选项D正确.

x1x2.下列函数中,与函数y=x-2的定义域、单调性与奇偶性均一致的函数是( )

2A.y=cos x 1C.y= B.y=x

??-x,x≥0,

D.y=?2

?x,x<0?

2

13x

1x解析:选D 函数y=x-2为奇函数,且在R上单调递减.函数y=cos x21

是偶函数,且在R上不单调.函数y=x是奇函数,但在R上单调递增.函数y3

??-x,x≥0,1

=的定义域是{x|x≠0},不是R.画出函数y=?2

x?x,x<0?

2

的大致图象如图

所示,可知该函数是奇函数,且在R上单调递减.故选D.

5?5?3.已知定义在R上的奇函数f(x)有f?x+?+f(x)=0,当-≤x≤0时,f(x)=2x+a,

4?2?则f(16)的值为( )

1

A. 23C. 2

1

B.-

23

D.-

2

?5??5?解析:选A 由f?x+?+f(x)=0,得f(x)=-f?x+?=f(x+5), ?2??2?

∴f(x)是以5为周期的周期函数, ∴f(16)=f(1+3×5)=f(1). ∵f(x)是R上的奇函数, ∴f(0)=1+a=0,∴a=-1.

5x∴当-≤x≤0时,f(x)=2-1,

41-1

∴f(-1)=2-1=-,

211

∴f(1)=,∴f(16)=. 22

4.已知函数f(x)是奇函数,在(0,+∞)上是减函数,且在区间[a,b](a

A.有最大值4 C.有最大值-3

B.有最小值-4 D.有最小值-3

解析:选B 法一:根据题意作出y=f(x)的简图,由图知,选B. 法二:当x∈[-b,-a]时,-x∈[a,b], 由题意得f(b)≤f(-x)≤f(a),即-3≤-f(x)≤4,

∴-4≤f(x)≤3,即在区间[-b,-a]上,f(x)min=-4,f(x)max

=3,故选B.

5.(2018·惠州一调)已知定义域为R的偶函数f(x)在(-∞,0]上是减函数,且f(1)=2,则不等式f(log2x)>2的解集为( )

A.(2,+∞) C.?0,?1? B.?0,?∪(2,+∞)

?2?

D.(2,+∞)

??2?

?∪(2,+∞) 2?

解析:选B 因为f(x)是R上的偶函数,且在(-∞,0]上是减函数, 所以f(x)在[0,+∞)上是增函数,

所以f(log2x)>2=f(1)?f(|log2x|)>f(1)?|log2x|>1?log2x>1或log2x<-1?x>2或10

2

6.(2019·合肥调研)定义在R上的奇函数f(x)满足f(x+2)=-f(x),且在[0,1]上是减函数,则有( )

?3??1??1??1??1??3?A.f??

?2??4??4??4??4??2??3??1??1??1??3??1?C.f??

解析:选C 因为f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x),所以函数的周

?3??1??1?期为4,作出f(x)的草图,如图,由图可知f??

?2??4??4?

?5?7.设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f?-?=________. ?2?

1?5??5??1??1?解析:f?-?=f?-+2?=f?-?=-f??=-. 2?2??2??2??2?1

答案:-

2

8.(2018·合肥二模)设f(x)是定义在R上以2为周期的偶函数,当x∈[0,1]时,f(x)=log2(x+1),则函数f(x)在[1,2]上的解析式是________________.

解析:令x∈[-1,0],则-x∈[0,1],结合题意可得f(x)=f(-x)=log2(-x+1), 令x∈[1,2],则x-2∈[-1,0],故f(x)=log2[-(x-2)+1]=log2(3-x). 故函数f(x)在[1,2]上的解析式是f(x)=log2(3-x). 答案:f(x)=log2(3-x)

?1?9.已知定义在R上的奇函数y=f(x)在(0,+∞)内单调递增,且f??=0,则f(x)>0?2?

的解集为_______________.

?1?解析:由奇函数y=f(x)在(0,+∞)内单调递增,且f??=0,可知函数y=f(x)在(-?2?

11?1?∞,0)内单调递增,且f?-?=0.由f(x)>0,可得x>或-

???11

答案:?x?-

2???2

??

? ??

10.已知函数f(x)为偶函数,且函数f(x)与g(x)的图象关于直线y=x对称,若g(3)=2,则f(-2)=________.

解析:因为函数f(x)与g(x)的图象关于直线y=x对称,且g(3)=2,所以f(2)=3.因为函数f(x)为偶函数,所以f(-2)=f(2)=3.

答案:3

11.设f(x)是定义域为R的周期函数,最小正周期为2,且f(1+x)=f(1-x),当-1≤x≤0时,f(x)=-x.

(1)判断f(x)的奇偶性;

(2)试求出函数f(x)在区间[-1,2]上的表达式. 解:(1)∵f(1+x)=f(1-x),∴f(-x)=f(2+x).