继电保护课后习题答案第二-张保会-尹项根 下载本文

内容发布更新时间 : 2024/12/23 18:04:51星期一 下面是文章的全部内容请认真阅读。

零序电压分布规律:

中性点直接接地系统中,故障点零序电压最高,距离距离故障点越远下降越多,在变压器中性点处降为0。

在中性点非直接接地系统中,若不计微小的零序电容电流在线路阻抗上产生的微小压降,则统一电压等级的整个系统的零序电压都一样(及三相变压器之间的一部分系统)。 (3)零序电流的大小及流动规律:

中性点直接接地系统中,零序电流的大小同系统的运行方式和系统各部分的零序阻抗的大小都有关系,零序电流在故障点与变压器中性点之间形成回路。

非直接接地系统中,零序电流的大小依赖于系统地相电动势和线路的对地电容。零序电流从故障点流出通过线路的对地电容流回大地。非故障元件的零序电流就是该线路本身的对地电容电流,故障元件中流过的零序电流,数值为全系统所有非故障元件对地电容电流值之和,再有消弧线圈的情况下,则是全系统所有非故障元件对地电容电流值与消弧线圈中的电感电流值相量和。

(4)故障线路与非故障线路灵虚功率方向:

中性点直接接地系统中,在故障线路上零序功率方向表现为线路流向母线;在非故障线路上,靠近故障点的一侧,零序功率方向由母线流向线路,而远离故障点的一侧,零序功率方向由线路流向母线。中性点非直接接地系统中,故障线路上电容性无功功率方向为线路流向母线;在非故障线路上,电容性无功功率方向为母线流向线路。 (5)故障电流的大小及流动规律:

中性点直接接地系统中,由于故障点和网络中变压器中性点形成回路,因此故障相电流较大。故障电流有故障电流向中性点。中性点非直接接地系统中,由于不构成短路回路而只经过对地电容形成回路,因此接地相电流很小。由于接地电流相对于负荷电流较小,基本上不影响负荷电流的分布、

(6)故障后电压的变化及对称性变化:

中性点直接接地系统中,故障后三相的相电压和线电压都不在对称。中性点非直接接地系统中,故障后接地相电压降为0,非接地相对于低电压升高至原电压的3倍,但三相之间线电压依然保持对称。

(7)故障对电力系统的危害:

中性点直接接地系统中,故障相电流很大,对系统危害很大。

中性点非直接接地系统中,故障相电流很小,而且三相之间的线电压任然保持对称,对负荷的供电没有影响,一般情况下,对系统危害不大。 (8)对保护切除故障速度的要求:

中性点直接接地系统中,由于接地相电流很大,为防止损坏设备,应迅速切除接地相甚至三相。中性点非直接接地系统中,由于故障点电流很小,切三项之间的线电压仍对称,可以允许再运行1~2h,同时发出信号。

图2—17所示系统中变压器中性点全部不接地,如果发现单相接地,试回答: (1)比较故障线路与非故障线路中零序电流、零序电压、零序功率方向的差异。 (2)如果在接地电流过的电容电流超过10A(35KV系统)、20A(10KV系统)、30A(3~6KV系统)时,将装设消弧线圈,减小接地电流,叙述用零序电流实现选线的困难。 (3)叙述用零序功率方向实现选线的困难。 (4)叙述拉路停电选线存在的问题。 答:(1)零序电流、零序电压、零序功率的方向:

零序电流:在非故障线路中流过的电流其数值等于本身的对地电容电流,在故障线路 中流过的零序电流数值为全系统所有非故障元件对地电容电流之和。

零序电压:全系统都会出现量值等于相电压的零序电压,个点零序电压基本一样。

零序功率方向:在故障线路上,电容性无功功率方向为线路流向母线;在非故障线路上,电容性无功功率方向为母线流向线路。

(2)装设消弧线圈后,上述零序电流的分布规律发生变化,接地线路中的零序电流为消弧线圈补偿后的参与电流,其量值较小,零序过电流元件将无法整定;零序电流的量值有可能小于非故障线路的零序电流,所以零序电流群体比幅原理也将无法应用。

(3)用零序功率方向选线困难:由于一般采用的是过补偿,流经故障线路的的零序电流是流过消弧线圈的零序电流与非故障元件零序电流之差,而电容无功功率方向是由母线流向线路(实际上是电感性无功功率由线路流向母线),零序功率方向与非故障线路一致,因此无法利用功率方向来判断故障线路。 (4)拉路停电选线存在的问题:

1)需要人工操作,费时、费力,自动化程度低;

2)需要依次断开每一条线路,影响供电可靠性,若重合闸拒动,可能造成较长时间的停电。 小结下列电流保护的基本原理、使用网络并阐述其优缺点: (1)相间短路的三段式电流保护; (2)方向性电流保护; (3)零序电流保护;

(4)方向性零序电流保护;

(5)中性点非直接接地系统中的电流电压保护。 答:(1)相间保护的三段式保护:利用短路故障时电流显著增大的故障特征形成判据构成保护。其中速断保护按照躲开本线路末端最大短路电流整定,保护本线路的部分;限时速度按保护按躲开下级速度按保护末端短路整定,保护本线路全长;速断和限时速断的联合工作,保护本线路短路被快速、灵敏切除。过电流保护躲开最大负荷电流作为本线路和相邻线路短路时的后备保护。

主要优点是简单可靠,并且在一般情况下也能满足快速切出故障的要求,因此在电网中特别是在35KV及以下电压等级的网络中获得了广泛的应用。

缺点是它的灵敏度受电网的接线以及电力系统的运行方式变化的影响。灵敏系数和保护范围往往不能满足要求,难以应用于更高等级的复杂网路。

(2)方向性电流保护:及利用故障是电流复制变大的特征,有利用电流与电压间相角的特征,在短路故障的流动方向正是保护应该动作的方向,并且流动幅值大于整定幅值时,保护动作跳闸。适用于多断电源网络。

优点:多数情况下保证了保护动作的选择性、灵敏性和速动性要求。

缺点:应用方向元件是接线复杂、投资增加,同时保护安装地点附近正方向发生是你想短路时,由于母线电压降低至零,方向元件失去判断的依据,保护装置据动,出现电压死区。 (3)零序电流保护:正常运行的三相对称,没有零序电流,在中性点直接接地电网中,发生接地故障时,会有很大的零序电流。故障特征明显,利用这一特征可以构成零序电流保护。适用网络与110KV及以上电压等级的网络。

优点:保护简单,经济,可靠;整定值一般较低,灵敏度较高;受系统运行方式变化的影响较小;系统发生震荡、短时过负荷是不受影响;没有电压死区。

缺点:对于短路线路或运行方式变化较大的情况,保护往往不能满足系统运行方式变化的要求。随着相重合闸的广泛应用,在单项跳开期间系统中可能有较大的零序电流,保护会受较大影响。自耦变压器的使用使保护整定配合复杂化。

(4)方向性零序电流保护:在双侧或单侧的电源的网络中,电源处变压器的中性点一般至少有一台要接地,由于零序电流的实际流向是由故障点流向各个中性点接地的变压器,因此

在变压器接地数目比较多的复杂网络中,就需要考虑零序电流保护动作的方向性问题。利用正方向和反方向故障时,零序功率的差别,使用功率方向元件闭锁可能误动作的保护,从而形成方向性零序保护。

优点:避免了不加方向元件,保护可能的误动作。其余的优点同零序电流保护。 缺点:同零序电流保护,接线较复杂。

(5)中性点非直接接地系统中的电流电压保护:在中性点非直接接地系统中,保护相间短路的电流、电压保护与中性点直接接地系统是完全相同的。仅有单相接地时二者有差别,中性点直接接地系统中单相接地形成了短路,有短路电流流过,保护应快速跳闸,除反应相电流幅值的电流保护外,还可以采用专门的零序保护。而在中性点非直接接地系统中单相接地时,没有形成短路,无大的短路电流流过,属于不正常运行,可以发出信号并指出接地所在的线路,以便尽快修复。当有单相接地时全系统出现等于相电压的零序电压,采用零序电压保护报告有单相接地发生,由于没有大短路电流流过故障线路这个明显特征,而甄别接地发生在哪条线路上则困难得多。一般需要专门的“单相接地选线装置”,装置依据接地与非接地线路基波零序电流大小、方向以及高次谐波特征的差异,选出接地线路。

3 电网距离保护

距离保护是利用正常运行与短路状态间的哪些电气量的差异构成的?

答:电力系统正常运行时,保护安装处的电压接近额定电压,电流为正常负荷电流,电压与电流的比值为负荷阻抗,其值较大,阻抗角为功率因数角,数值较小;电力系统发生短路时,保护安装处的电压变为母线残余电压,电流变为短路电流,电压与电流的比值变为保护安装处与短路点之间一段线路的短路阻抗,其值较小,阻抗角为输电线路的阻抗角,数值较大,距离保护就是利用了正常运行与短路时电压和电流的比值,即测量阻抗之间的差异构成的。

jXZk2Zset1Zk1ZLR

OZk3什么是保护安装处的负荷阻抗、短路阻抗、系统等值阻抗? 答:负荷阻抗是指在电力系统正常运行时,保护安装处的电压(近似为额定电压)与电流(负

荷电流)的比值。因为电力系统正常运行时电压较高、电流较小、功率因数较高(即电压与电流之间的相位差较小),负荷阻抗的特点是量值较大,在阻抗复平面上与R轴之间的夹角较小。

短路阻抗是指在电力系统发生短路时保护安装处的电压变为母线残余电压,电流变为短路电流,此时测量电压与测量电流的比值就是短路阻抗。短路阻抗即保护安装处与短路点之间一段线路的阻抗,其值较小,阻抗角交大。

系统等值阻抗:在单个电源供电的情况下,系统等值阻抗即为保护安装处与背侧电源点之间电力元件的阻抗和;在由多个电源点供电的情况下,系统等值阻抗即为保护安装处断路器断开的情况下,其所连接母线处的戴维南等值阻抗,即系统等值电动势与母线处短路电流的比值,一般通过等值、简化的方法求出。

什么是故障环路?相间短路与接地短路所构成的故障环路的最明显差别是什么? 答:在电力系统发生故障时,故障电流流过的通路称为故障环路。

相间短路与接地短路所构成的故障环路的最明显差异是:接地短路的故障环路为“相-地”故障环路,即短路电流在故障相与大地之间流通;对于相间短路,故障环路为“相-相”故障环路,即短路电流仅在故障相之间流通,不流向大地。

构成距离保护为什么必须用故障环上的电流、电压作为测量电压和电流?

答:在三相系统中,任何一项的测量电压与测量电流值比都能算出一个测量阻抗,但是只有故障环路上的测量电压、电流之间才能满足关系Um?ImZm?ImZk?IZ1Lk,即由它们算出的测量阻抗才等于短路阻抗,才能够正确反应故障点到保护安装处之间的距离。用非故障环上的测量电压与电流虽然也能算出一个测量阻抗,但它与故障距离之间没有直接的关系,不能正确的反应故障距离,虽然不能构成距离保护。

为了切除线路上各种类型的短路,一般配置哪几种接线方式的距离保护协同工作?

答:保护装置一般只考虑简单故障,即单相接地短路、两相接地短路、两相不接地故障和三相短路故障四种类型的故障。再110KV及以上电压等级的输电线路上,一般配置保护接地短路的距离保护和保护相间短路的距离保护。接地距离保护的接线方式引入“相——地”故障环上的测量电压、电流,能够准确的反应单相接地、两相接地和三相接地短路;相间距离保护接线方式映入“相——相”故障换上的测量电压、电流,能够准确地反应两相接地短路、两相不接地短路和三相短路。即对于单线接地短路,只有接地距离保护接线方式能够正确反应;对于两相不接地短路,只有相间距离保护接线方式能够正确反应;而对于两相接地短路及三相短路,两种接线方式都能够正确反应。为了切除线路上的各种类型的短路,两种接线方式都需要配置,两者协同工作,共同实现线路保护。

由于相间距离保护接线方式手过渡电阻的影响较小,因此对于两相接地短路及三相故障,尽管理论上两种接线方式都能够反应,但一般多为相间距离保护首先跳闸。 在本线路上发生金属性短路,测量阻抗为什么能够正确反应故障的距离?

答:电力系统发生金属性短路时,在保护安装处所测量Um降低,Im增大,它们的比值Zm变为短路点与保护安装处之间短路阻抗Zk;对于具有均匀参数的输电线路来说,Zk与短路距离Lk成正比关系,即Zm=Zk=Z1Lk(Z1=R1+jX1,为单位长度线路的复阻抗),所以能够正确反应故障的距离。

距离保护装置一般由哪几部分组成?简述各部分的作用。

答:距离保护一般由启动、测量、振荡闭锁、电压回路断线闭锁、配合逻辑和出口等几部分组成,它们的作用分述如下:

(1)启动部分:用来判别系统是否发生故障。系统正常运行时,该部分不动作;而当发生故障时,该部分能够动作。通常情况下,只有启动部分动作后,才将后续的测量、逻辑等部分投入工作。

????.(2)测量部分:在系统故障的情况下,快速、准确地测定出故障方向和距离,并与预先设定的保护范围相比较,区内故障时给出动作信号,区外故障时不动作。

(3)振荡闭锁部分:在电力系统发生振荡时,距离保护的测量元件有可能误动作,振荡闭锁元件的作用就是正确区分振荡和故障。在系统振荡的情况下,将保护闭锁,即使测量元件动作,也不会出口跳闸;在系统故障的情况下,开放保护,如果测量元件动作且满足其他动作条件,则发出跳闸命令,将故障设备切除。

(4)电压回路断线部分:电压回路断线时,将会造成保护测量电压的消失,从而可能使距离保护的测量部分出现误判断。这种情况下应该将保护闭锁,以防止出现不必要的误动。 (5)配合逻辑部分:用来实现距离保护各个部分之间的逻辑配合以及三段式保护中各段之间的时限配合。

(6)出口部分:包括跳闸出口和信号出口,在保护动作时接通跳闸回路并发出相应的信号。 为什么阻抗继电器的动作特性必须是一个区域?

答:阻抗继电器在实际情况下,由于互感器误差、故障点过度电阻等因素影响,继电器实际测量到的Zm一般并不能严格地落在与Zset同向的直线上,而是落在该直线附近的一个区域中。为保证区内故障情况下阻抗继电器都能可靠动作,在阻抗复平面上,其动作的范围应该是一个包括Zset对应线段在内,但在Zset的方向上不超过Zset的区域,如圆形区域、四边形区域、苹果形区域、橄榄形区域等。

jXjXZset1ZmORjXZsetZset2ZsetZset2OZmORZset2

R

(a) (b) (c)

jXjXo

Ro

(d) (e)

图3-2 常见阻抗继电器的动作特性

(a) 偏移圆阻抗特性;(b) 方向圆阻抗特性;(c) 全阻抗圆特性;

(d)“8”字形特性; (e)四边形特性

画图并解释偏移特性阻抗继电器的测量阻抗、整定阻抗和动作阻抗的含义。