2012高教社杯全国大学生数学建模竞赛B题获奖论文.doc 下载本文

内容发布更新时间 : 2024/12/29 5:14:11星期一 下面是文章的全部内容请认真阅读。

.

2012高教社杯全国大学生数学建模竞赛

承 诺 书

我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名): 日期: 年 月 日

赛区评阅编号(由赛区组委会评阅前进行编号):

.

.

2012高教社杯全国大学生数学建模竞赛

编 号 专 用 页

赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

.

基于背包算法的太阳能小屋的研究与设计

摘要

本文针对太阳能小屋上光伏电池铺设问题,运用贪婪算法,通过局部最优来逼近整体最优.针对三个问题,分别得出了光伏电池的铺设方案和对应的逆变器选择,架空后光伏电池与水平面夹角的最优解以及小屋对太阳辐射的最大化利用的设计方案.

对于问题一,首先对光伏电池的性价比K进行了纵向比较,选出了性价比最高的三种光伏电池B2,B1,A3.为了使剩余面积达到最少,采用整数背包算法,从而确定各平面每种光伏电池的理论个数,并通过计算各平面总盈利情况,发现东面盈利为负,因此舍弃东面,在铺设过程中,优先选择产生盈利最大的光伏电池,并考虑实际情况,经过计算选择光伏电池C10填补剩余面积,得到B2,B1,A3,C10实际铺设个数,分别为:顶面(12,12,7,0),南面(4,2,0,21),北面(6,5,2,0),再选配相应的逆变器,最终计算出太阳能小屋的35年内的发电量为17047.54kw?h;经济效益为76854.11元;回报年限为20.58年. 对于问题二,首先通过建立三个坐标系结合正交分解求出顶面真实吸收太阳辐射强的表达式为(?cosAcos?sin??sin?cos?)w.其次一一针对固定时刻将cosA,cos?,sin?固定即可得关于?的函数f(?)??cosAcos?sin??sin?cos?.最后对f(?)进行求导即可求出f(?)取得

f(?)max时的角度??51.7?,即为架空后光伏电池与水平面的夹角.这样可得太阳能小屋的35年内

的发电量22161.81kw?h;经济效益92224.93元;回报年限为18.2年. 对于问题三,结合问题一、二分析的数据,将屋顶采用单坡面设计,房屋朝向南偏西15度,达到了屋顶接收阳光面积最大和全年太阳辐射强度的最优目的. 关键词: 背包算法 贪婪算法 多重最优化 1问题重述 在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网.不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等.因此,在太阳能小屋的设计中,研究光伏电池在小屋外表面的优化铺设是很重要的问题.

附件中提供了相关信息.请参考附件提供的数据,对下列三个问题,分别给出小屋外表面光伏电池的铺设方案,使小屋的全年太阳能光伏发电总量尽可能大,而单位发电量的费用尽可能小,并计算出小屋光伏电池35年寿命期内的发电总量、经济效益(当前民用电价按0.5元/kWh计算)及投资

.