内容发布更新时间 : 2024/12/29 12:57:04星期一 下面是文章的全部内容请认真阅读。
项目题目: 基于Matlab的语音识别 一、引言
语音识别技术是让计算机识别一些语音信号,并把语音信号转换成相应的文
本或者命令的一种高科技技术。语音识别技术所涉及的领域非常广泛,包括信号处理、模式识别、人工智能等技术。近年来已经从实验室开始走向市场,渗透到家电、通信、医疗、消费电子产品等各个领域,让人们的生活更加方便。
语音识别系统的分类有三种依据:词汇量大小,对说话人说话方式的要求和对说话人的依赖程度。
(1)根据词汇量大小,可以分为小词汇量、中等词汇量、大词汇量及无限词汇量识别系统。
(2)根据对说话人说话方式的要求,可以分为孤立字(词)语音识别系统、连接字语音识别系统及连续语音识别系统。
(3)根据对说话人的依赖程度可以分为特定人和非特定人语音识别系统。
二、语音识别系统框架设计
2.1语音识别系统的基本结构
1
语音识别系统本质上是一种模式识别系统,其基本结构原理框图如图l所示,主要包括语音信号预处理、特征提取、特征建模(建立参考模式库)、相似性度量(模式匹配)和后处理等几个功能模块,其中后处理模块为可选部分。
三、语音识别设计步骤
3.1语音信号的特征及其端点检测
图2 数字‘7’开始部分波形
图2是数字”7”的波形进行局部放大后的情况,可以看到,在6800之前的部分信号幅度很低,明显属于静音。而在6800以后,信号幅度开始增强,并呈现明显的周期性。在波形的上半部分可以观察到有规律的尖峰,两个尖峰之间的距离就是所谓的基音周期,实际上也就是说话人的声带振动的周期。
这样可以很直观的用信号的幅度作为特征,区分静音和语音。只要设定一个
2
门限,当信号的幅度超过该门限的时候,就认为语音开始,当幅度降低到门限以下就认为语音结束。
3.2 语音识别系统
3.2.1语音识别系统的分类
语音识别按说话人的讲话方式可分为3类:(1)即孤立词识别(isolated word recognition),孤立词识别 的任务是识别事先已知的孤立的词,如“开机”、“关机”等。(3)连续语音识别,连续语音识别的任务则是识别任意的连续语音,如一个句子或一段话。
从识别对象的类型来看,语音识别可以分为特定人语音识别和非特定人语音识别,特定人是指针对一个用户的语音识别,非特定人则可用于不同的用户。显然,非特定人语音识别系统更符合实际需要,但它要比针对特定人的识别困难得多。
3.2.2语音识别系统的基本构成
语音识别系统的实现方案如图3所示。输入的模拟语音信号首先要进行处理,包括预滤波,采样和量化,加窗,端点检测,预加重等。语音信号经处理后,接下来很重要的一环就是特征参数提取。
图3 语音识别系统
在训练阶段,将特征参数进行一定的处理之后,为每个词条得到一个模型,保存为模版库。在识别阶段,语音信号经过相同的通道得到语音参数,生成测试模版,与参考模板进行匹配,将匹配分数最高的参考模型作为识别结果。 3. 2.3 语音识别系统的特征参数提取
特征提取是对语音信号进行分析处理,去除对语音识别无关紧要的冗余信息,获得影响语音识别的重要信息。语音信号是一种典型的时变信号,然而如果把观察时间缩短到十毫秒至几十毫秒,则可以得到一系列近似稳定的信号。人的发音器官可以用若干段前后连接的声管进行模拟,这就是所谓的声管模型。
全极点线性预测参数 (LPC: Liner Prediction Coeffieient)可以对声管模型进行很好的描述,LPC参数是模拟人的发声器官的,是一种基于语音合成的参数模型。
在语音识别中,很少用LPC系数,而是用LPC倒谱参数 (LPCC: Liner Prediction Cepstral Coefficient)。LPCC参数的优点是计算量小,对元音有较好的描述能力,其缺点在于对辅音的描述能力较差,抗噪声性能较差。
3