第五章相交线与平行线全章导学案(共14课时) 下载本文

内容发布更新时间 : 2024/11/16 20:30:12星期一 下面是文章的全部内容请认真阅读。

最大最全最精的教育资源网 www.xsjjyw.com

编号:NO_____ 班级_______ 小组_____ 姓名_____小组评价____教师评价______

第五章相交线与平行线导学案 第一课时 5.1.1 相交线(1)

【学习目标】

1.知道邻补角、对顶角的概念,能找出图形中的一个角的邻补角和对顶角。 2.能用对顶角相等的性质计算角度,并能运用它解决一些问题. 【学习重点与难点】 重点:对顶角的性质

难点:能找出图形中的一个角的邻补角和对顶角 【探究学习】

1.相交线----邻补角和对顶角

C A 4 1 B

2

O 3

D

(1).画直线AB、CD相交于点O,并说出图中4个角分别是 。 两两相配共能组成 对角,分别是 , 其中∠1 和∠2,∠1和∠4的位置关系的共同点是 ,∠1和∠3,∠2和

∠4的位置关系的共同点是 。 (2)邻补角、对顶角概念.

_______________________________叫做邻补角. ______________________________叫做对顶角. (3).用量角器分别量一量各个角的度数,你会发现各类角的度数有什么关系,如∠1和∠2的关系是 ,∠1和∠4的关系是 ,∠1和∠3的关系是 ,由此可以得出有“相邻”关系的两角__,“对顶”关系的两角__.

(4)如果改变∠AOC的大小, 会改变它与其它角的位置关系和数量关系吗?______ (5)邻补角、对顶角概念剖析:

①邻补角的“邻”就是__ _,就是它们有一条_ __,“补”就是_ __,就是这两角的

另一条边________.

②邻补角可看成是平角被过它顶点的____分成的___角. ③邻补角是互补的两个角,但互补的两个角 是邻补角。

④对顶角是两条相交直线构成的,其中有公共顶点没有公共边的两个角。 2.对顶角性质

①在图(1)中,∠AOC的邻补角是__和___,所以∠AOC与___互补,∠AOC 与__互补,根据“同角的补角相等”,可以得出__=___,类似地有___=___.

新世纪教育网 天量课件、教案、试卷、学案免费下载 第 1 页 共 37 页

最大最全最精的教育资源网 www.xsjjyw.com

②对顶角性质:______.

③对顶角的概念是确定二角的___关系,对顶角性质是确定为对顶角的两角的__关系. 尝试练习 1.完成下表: 两直线相交 所形成的角 分类 位置关系 数量关系 CAB2143OD 2.判断下列图中是否存在对顶角.

1

112122 23.利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象. 4.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.

a b

1 2

4 3

达标练习:

ED1.课本第3页练习题。 BAO

C F2.如图1,直线AB、CD、EF相交于点O,∠BOE的对顶角是_______,∠COF 的邻补角是________.∠AOE的对顶角是_______,∠AOF 的邻补角是____ EB3.如图2,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,

∠FOB=90°, 则∠EOF=________.

CDDA4.如图,直线AB、CD相交于点O. O (1)若∠AOC+∠BOD=100°,求各角的度数. OFBAC(2)若∠BOC比∠AOC的2倍多33°,求各角的度数.

选做题:

1.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?

2.平面上有3条直线两两相交,可组成多少对对顶角?4条呢?n条呢?

新世纪教育网 天量课件、教案、试卷、学案免费下载 第 2 页 共 37 页

最大最全最精的教育资源网 www.xsjjyw.com

五.小结:通过本节课的学习你有何收获? 六.作业:

1.课本第8页复习巩固2题。 2. 课本第9页综合应用7题

编号:NO_____ 班级_______ 小组_____ 姓名_____小组评价____教师评价______

第二课时 5.1.2 垂线(1)

【学习目标】

1.知道垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线, 并且只能画出一条垂线”。

2.会用三角尺或量角器过一点画一条直线的垂线。 【学习重点与难点】

重点:垂线的概念和性质

难点:用三角尺或量角器过一点画一条直线的垂线 【课前铺垫】观察教室里的课桌面、黑板面相邻的两条边, 方格纸的横线和竖 线 ,

思考这些给大家什么印象?_______________ 【探究新知】自学课本第3页内容,完成下列问题。

1. 固定木条a,转动木条b, 当b的位置变化时,a、b所成的角a是如何变 化的?

角a从锐角变为___ 。其中会有特殊情况出现吗? 其中∠a是__ 角是特殊情况。当这种情况出现时,a、b所成的四个角有什么特殊关系? 当 ∠a是直角时,它的邻补角,对顶角都是__角,即a、b所成的四个角都是__ 角,都___.

2. 两条直线相交所成的四个角中有一个是直角时,这两条直线互相 , 其中的一条叫做另一条的垂线,它们的交点叫做垂足。 3.垂直的表示法:

垂直用符号___来表示, “直线AB垂直于直线CD, 垂足为O”,则记为____,垂足为_,并在图中任意一个角处作上直角记号,如图. 【合作探究】学生用三角尺或量角器画已知直线L的垂线. (1)已知直线L,画出直线L的垂线.这样的垂线能画 条。

(2)经过直线L上一点A画直线L的垂线,这样的垂线能画出 条。 结论:经过直线上一点_________与已知直线垂直. (3)经过直线L外一点B画直线L的垂线,这样的垂线能画出__条. 结论:经过直线外一点_________与已知直线垂直.

由上可得垂线性质1:______________________

bb?aAODCB新世纪教育网 天量课件、教案、试卷、学案免费下载 第 3 页 共 37 页