《遗传学(上、下册)》期末复习试题库及答案 下载本文

内容发布更新时间 : 2024/12/23 18:08:01星期一 下面是文章的全部内容请认真阅读。

1、答:遗传学研究的对象主要是微生物、植物、动物和人类等,是研究它们的遗传和变异。

遗传学研究的任务是阐明生物遗传变异的现象及表现的规律;深入探索遗传和变异的原因及物质基础,揭示其内在规律;从而进一步指导动物、植物和微生物的育种实践,提高医学水平,保障人民身体健康。

2、答:孟德尔在前人植物杂交试验的基础上,于1856~1864年从事豌豆杂交试验,通过细致的后代记载和统计分析,在1866年发表了\植物杂交试验\论文。文中首次提出分离和独立分配两个遗传基本规律,认为性状传递是受细胞里的遗传因子控制的,这一重要理论直到1900年狄?弗里斯、柴马克、柯伦斯三人同时发现后才受到重视。因此,1900年孟德尔遗传规律的重新发现,被公认为是遗传学建立和开始发展的一年。1906年是贝特生首先提出了遗传学作为一个学科的名称。

3、答:植物被子特有的一种受精现象。当花粉传送到雌雄柱头上,长出花粉管,伸入胚囊,一旦接触助细胞即破裂,助细胞也同时破坏。两个精核与花粉管的内含物一同进入胚囊,这时1个精核(n)与卵细胞(n)受精结合为合子(2n),将来发育成胚。同时另1精核(n)与两个极核(n+n)受精结合为胚乳核(3 n),将来发育成胚乳。这一过程就称为双受精。

4、答:有丝分裂只有一次分裂。先是细胞核分裂,后是细胞质分裂,细胞分裂为二,各含有一个核。称为体细胞分裂。

减数分裂包括两次分裂,第一次分裂染色体减半,第二次染色体等数分裂。细胞在减数分裂时核内,染色体严格按照一定的规律变化,最后分裂成为 4个子细胞,发育成雌性细胞或者雄性细胞,各具有半数的染色体。也称为性细胞分裂。

减数分裂偶线期同源染色体联合称二价体。粗线期时非姐妹染色体间出现交换,遗传物质进行重组。双线期时各个联会了的二价体因非姐妹染色体相互排斥发生交叉互换因而发生变异。有丝分裂则都没有。

减数分裂的中期I 各个同源染色体着丝点分散在赤道板的两侧,并且每个同源染色体的着丝点朝向哪一板时随机的,而有丝分裂

中期每个染色体的着丝点整齐地排列在各个分裂细胞的赤道板上,着丝点开始分裂。

细胞经过减数分裂,形成四个子细胞,染色体数目成半,而有丝分裂形成二个子细胞,染色体数目相等。

5、答:细胞有丝分裂的遗传学意义:(1)每个染色体准确复制分裂为二,为形成两个子细胞在遗传组成上与母细胞完全一样提供了基础。(2)复制的各对染色体有规则而均匀地分配到两个子细胞中去,使两个细胞与母细胞具有同样质量和数量的染色体。

细胞减丝分裂的遗传学意义:(1)雌雄性细胞染色体数目减半,保证了亲代与子代之间染色体数目的恒定性,并保证了物种相对的稳定性;(2)由于染色体重组、分离、交换,为生物的变异提供了重要的物质基础。

6、答:1)减数分裂后形成的四个子细胞,发育为雌配子或雄配子,各具有半数的染色体(n)。雌雄配子受精结合为合子,又恢复为全数的染色体2n。保持了亲代与子代间染色体数目的恒定性,为后代的正常发育和性状遗传提供了物质基础,保证了物种相对的稳定性。 2)同源染色体在后期Ⅰ分向两级是随机的,各个非同源染色体之间均可能自由组合在一个子细胞里。 n对染色体就可能有2n种自由组合方式。

3)同源染色体的非姐妹染色单体之间还可能出现各种方式的交换,这就更增加了这种差异的复杂性。为生物的变异提供了重要的物质基础。

7、答:红色面包霉的单倍体世代(n=7)是多细胞的菌丝体和分生孢子。由分生孢子发芽形成为新的菌丝,属于其无性世代。一般情况下,它就是这样循环地进行无性繁殖。但是,有时也会产生两种不同生理类型的菌丝,一般分别假定为正(+)和(-)两种结合型,它们将类似于雌雄性别,通过融合和异型核的接合而形成二倍体的合子

(2n=14),属于其有性世代。合子本身是短暂的二倍体世代。红色面包霉的有性过程也可以通过另一种方式来实现。因为其\和\两种接合型的菌丝都可以产生原子囊果和分生孢子。如果说原子囊果相当于高等植物的卵细胞,则分生孢子相当于精细胞。这样当\接合型(n)与\接合型(n)融合和受精后,便可形成二倍体的合子(2n)。无论上述的那一种方式,在子囊果里子囊的菌丝细胞中合子

形成以后,可立即进行两次减数分裂(一次DNA复制和二次核分裂),产生出四个单倍体的核,这时称为四个孢子。四个孢子中每个核进行一次有丝分裂,最后形成为8个子囊孢子,这样子囊里的8个孢子有4 个为\接合型,另有4个为\接合型,二者总是成1:1的比例分离。

8、答:高等动、植物生活周期的主要差异:动物通常是从二倍体的性原细胞经过减数分裂即直接形成精子和卵细胞,其单倍体的配子时间很短;有性过程是精子和卵细胞融合成受精卵,再由受精卵分化发育成胚胎,直至成熟个体。而植物从二倍体的性原细胞经过减数分裂后先产生为单倍体的雄配子体和雌配子体,再进行一系列的有丝分裂,然后再形成为精子和卵细胞;有性过程是经双受精,精子与卵细胞结合进一步发育分化成胚,而另一精子与两个极核结合,发育成胚乳,胚乳在胚或种子生长发育过程起到很重要作用。

9、答:(1)完全显性,不完全显性,共显性。(2)显性现象的实质:并非显性基因抑制隐性基因作用,一对相对基因在杂合状态下,显隐性基因决定性状表现的实质在于它们分别控制各自决定的代谢过程,从而控制性状的发育、表达。如孩子皮下脂肪颜色的遗传、豌豆株高的遗传。

10、答:所谓上位是指某对等位基因的表现受到另一对等位基因的影响,随着后者的不同

而不同,这种现象叫做上位效应,上位可分为显性上位和隐性上位。而显性是指一对等位基因中,当其处于杂合状态时,只表现一个基因所控制的性状,该基因为显性基因,这种现象叫做显性。所以上位是指不同对等位基因间的作用,而显性是指一对等位基因内的作用方式。

11、答:分离定律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;只有遗传因子的分离和重组,才能表现出性状的显隐性。可以说无分离现象的存在,也就无显性现象的发生。 12、答:分离定律的实质是随着同源染色体的分离,等位基因在产生配子时彼此分离,并独立地分配到不同的性细胞中。 独立分配规律的实质是配子形成时非同源染色体自由组合。

连锁交换定律的实质是配子形成时,位于同一条染色体上的不同基因,常常连在一起进入配子;位于同源染色体上的等位基因有时会随着非姐妹染色单体的交换而发生交换,因而产生了基因的重组。 13、答:相互连锁的两个基因位于同一个染色体的不同位置,如果这两个位置之间发生交换,就导致这连个连锁基因的重组;交换是发生在减数分裂第一次分裂的前期,交换发生在染色单体之间;在连锁的基因间每发生一个交叉,只有一半是重组类型。

14、答:交换值是指同源染色体的非姐妹染色单体间有关基因的染色体片段发生交换的频率,或等于交换型配子占总配子数的百分率。交换值的幅度经常变动在0~50%之间。交换值越接近0%,说明连锁强度越大,两个连锁的非等位基因之间发生交换的孢母细胞数越少。当交换值越接近50%,连锁强度越小,两个连锁的非等位基因之间发生交换的孢母细胞数越多。由于交换值具有相对的稳定性,所以通常以这个数值表示两个基因在同一染色体上的相对距离,或称遗传距离。交换值越大,连锁基因间的距离越远;交换值越小,连锁基因间的距离越近。

15、答:以人类为例。人类男性性染色体XY,女性性染色体XX。男性可产生含X和Y染色体的两类数目相等的配子,而女性只产生一种含X染色体的配子。精卵配子结合后产生含XY和XX两类比例相同的合子,分别发育成男性和女性。因此,男女性比接近于1:1。 16、答:相同点是:1)结构和化学组成相同(都是DNA); 2)都载有基因; 3)传递规律相同。

不同点是:1)不同性别性染色体种类不同; 2)不同性染色体含有的基因种类数量不同; 3)性染色体的传递是定向的。

17、答:伴性遗传是指性染色体上基因所控制的某些性状总是伴随性别而遗传的现象。