内容发布更新时间 : 2024/12/26 22:04:15星期一 下面是文章的全部内容请认真阅读。
第9章课后参考答案
9-1 何谓凸轮机构传动中的刚性冲击和柔性冲击?试补全图示各段s一?、 v一?、?一?曲线,并指出哪些地方有刚性冲击,哪些地方有柔性冲击?
答 凸轮机构传动中的刚性冲击是指理论上无穷大的惯性力瞬问作用到构件上,使构件产生强烈的冲击;而柔性冲击是指理论上有限大的惯性力瞬间作用到构件上,使构件产生的冲击。
s-δ, v-δ, a-δ曲线见图。在图9-1中B,C处有刚性冲击,在0,A,D,E处有柔性冲击。
9—2何谓凸轮工作廓线的变尖现象和推杆运动的失真现象?它对凸轮机构的工作有何影响?如何加以避免?
答 在用包络的方法确定凸轮的工作廓线时,凸轮的工作廓线出现尖点的现象称为变尖现象:凸轮的工作廓线使推杆不能实现预期的运动规律的现象件为失真现象。变尖的工作廓线极易磨损,使推杆运动失真.使推杆运动规律达不到设计要求,因此应设法避免。变尖和失真现象可通过增大凸轮的基圆半径.减小滚子半
s?0v?/32?/3?4?/35?/32??a?题9-1图
径以及修改推杆的运动规律等方法来避免。
9—3力封闭与几何封闭凸轮机构的许用压力角的确定是否一样?为什么? 答 力封闭与几何封闭凸轮机沟的许用压力角的确定是不一样的。因为在回程阶段-对于力封闭的凸轮饥构,由于这时使推杆运动的不是凸轮对推杆的作用力F,而是推杆所受的封闭力.其不存在自锁的同题,故允许采用较大的压力角。但为
使推秆与凸轮之间的作用力不致过大。也需限定较大的许用压力角。而对于几何形状封闭的凸轮机构,则需要考虑自锁的问题。许用压力角相对就小一些。 9—4一滚子推杆盘形凸轮机构,在使用中发现推杆滚子的直径偏小,欲改用较大的滚子?问是否可行?为什么?
答 不可行。因为滚子半径增大后。凸轮的理论廓线改变了.推杆的运动规律也势必发生变化。
9—5一对心直动推杆盘形凸轮机构,在使用中发现推程压力角稍偏大,拟采用推杆偏置的办法来改善,问是否可行?为什么?
答 不可行。因为推杆偏置的大小、方向的改变会直接影响推杆的运动规律.而原凸轮机构推杆的运动规律应该是不允许擅自改动的。
9-6 在图示机构中,哪个是正偏置?哪个是负偏置?根据式(9-24)说明偏置方向对凸轮机构压力角有何影响?
答 由凸轮的回转中心作推杆轴线的垂线.得垂足点,若凸轮在垂足点的
速度沿推杆的推程方向.刚凸轮机构为正偏置.反之为负偏置。由此可知.在图 示机沟中,两个均为正偏置。由
ds/d?etan??(r02?e2)?s
可知.在其他条件不变的情况下。若为正偏置(e前取减号).由于推程时(ds/dδ)为正.式中分子ds/dδ-e
9—7 试标出题9—6a图在图示位置时凸轮机构的压力角,凸轮从图示位置转过90o后推杆的位移;并标出题9—6b图推杆从图示位置升高位移s时,凸轮的转角和凸轮机构的压力角。
解 如图 (a)所示,用直线连接圆盘凸轮圆心A和滚子中心B,则直线AB与推杆导路之间所夹的锐角为图示位置时凸轮机构的压力角。以A为圆心, AB为半径作圆, 得凸轮的理论廓线圆。连接A与凸轮的转动中心O并延长,交于凸轮的理论廓线于C点。以O为圆心.以OC为半径作圆得凸轮的基圆。以O为圆心, 以O点到推杆导路的距离OD为半径作圆得推杆的偏距圆;。延长推杆导路
线交基圆于G-点,以直线连接OG。过O点作OG的垂线,交基圆于E点。过E点在偏距圆的下侧作切线.切点为H点.交理论廓线于F点,则线段EF的长即为凸轮从图示位置转过90后推杆的位移s。
方法同前,在图 (b)中分别作出凸轮的理论廓线、基圆、推杆的偏距圆。延长推杆导路线交基圆于G点,以直线连接OG。以O为圆心,以滚子中心升高s后滚子的转动中心K到O点的距离OK为半径作圆弧,交理论廓线于 F点。过F点作偏距圆的切线,交基圆于E点,切点为H。则∠GOE为推杆从图示位置升高位移s时-凸轮的转角,∠AFH为此时凸轮机构的压力角。
(a) (b)
9—8在图示凸轮机构中,圆弧底摆动推杆与凸轮在B点接触。当凸轮从图示位置逆时针转过90。时,试用图解法标出: 1)推杆在凸轮上的接触点; 2)摆杆位移角的大小;
3)凸轮机构的压力角。
解 如图所示,以O为圆心,以O点到推杆转动中心A的距离AO为半径作圆,得推杆转动中心反转位置圆。
过O点怍OA的垂线,交推杆转动中心反转位置圆于D点。
以O`为圆心.以O`点到推杆圆弧圆心C的距离CO’为半径作圆.得凸轮的理论廓线。
以O为圆心,作圆内切于凸轮的理论廓线圆,得凸轮的基圆。
以D为圆心,以AC为半径作圆弧,交凸轮的理论廓线于E点,交凸轮的圆于G点。
用直线连接EO’,交凸轮的实际廓线于F点,此即为推杆在凸轮上的接触点;而∠GDE即为摆杆的位移角;过E点并垂直于DE的直线与直线EF间所夹的锐角即为此时凸轮机构的压力角。
9—9 已知凸轮角速度为1.5 rad/s,凸轮转角??0?~150?时,推杆等速上升16mm; ??150?~180?时推杆远休,??180?~300?时推杆下降16mm;??300?~360?时推杆近休。试选择合适的推杆推程运动规律,以实现其最大加速度值最小,并画出其运动线图。
解 推杆在推程及回程段运动规律的位移方程为: (1)推程:s=hδ/δ0 0o≤δ≤1 50o
(2)回程:等加速段s=h一2hδ2/δ`02 0o≤δ≤60o
22
等减速段s=2h(δ’一δ)/δ0` 60o≤δ≤120o
计算各分点的位移值如表9.3:
根据表9-3可作所求图如下图: